1 research outputs found

    Specification of Smart AP solutions - version 2

    Get PDF
    This document includes the specification of the second version of the Smart Access Point (AP) Solutions, which are being developed within WP3 of the Wi-5 project. After the Literature Review, a global view of the Wi-5 architecture is presented which includes not only the Smart AP Solutions but also the Cooperative Functionalities being developed in WP4. Next, the Smart AP Solutions are described including the summary of the general approach being followed based on Light Virtual APs (LVAPs). The functionalities enabling Radio Resource Management (i.e. Dynamic Channel Allocation, Load Balancing and Power Control) are reported in detail and the current status of the implementation of the solutions is detailed, with a set of improvements aimed at integrating the support of different channels within the Wi-5 framework. A multi-channel handoff scheme has been designed, requiring a good synchronisation between the different events, in order to make the LVAP switching happen at the same moment when the STA switches its channel. In addition, the beacon generation has been modified in order to improve the scalability and to give a better user experience during handoffs. Tests measuring the handoff delay are presented using three wireless cards from different manufacturers, and using as test traffic a flow of an online game with real-time constraints. The results show that fast handovers ranging from 30 to 200 milliseconds can be achieved. The savings provided by frame aggregation, and its effect on subjective quality have also been studied. A methodology including subjective tests with real users has evaluated this effect, using paired comparison. The results indicate that bandwidth usage savings and especially significant packet rate reduction can be obtained without degrading players’ Quality of Experience (QoE), as long as the overall latency is kept under 100ms. An important finding coming from these results is that the players do not register delay variation introduced by multiplexing
    corecore