4 research outputs found

    A robustness approach to study metastable behaviours in a lattice-gas model of swarming

    Get PDF
    International audienceResearch in biology is increasingly interested in discrete dynamical systems to simulate natural phenomena with simple models. But how to take into account their robustness? We illustrate this issue by considering the behaviour of a lattice-gas model with an alignment-favouring interaction rule. This model, which has been shown to display a phase transition between an ordered and a disordered phase, follows ergodic dynamics. We present a method based on the study of stability and robustness, and show that the organised phase may result in several different behaviours. We then observe that behaviours are influenced asymptotically by the definition of the cellular lattice

    Is there something like ''modellability'' ? - Reflections on the robustness of discrete models of complex systems

    Get PDF
    International audienceExtended abstract of the talk given in Universidad de Concepcion, Chile, Octobre 21st., 2013. Invitation by Pr. Julio Aracen

    First steps on asynchronous lattice-gas models with an application to a swarming rule

    Get PDF
    International audienceLattice-gas cellular automata are often considered as a particular case of cellular automata in which additional constraints apply, such as conservation of particles or spatial exclusion. But what about their updating? How to deal with non-perfect synchrony? Novel definitions of asynchronism are proposed that respect the specific hypotheses of lattice-gas models. These definitions are then applied to a swarming rule in order to explore the robustness of the global emergent behaviour. In particular, we compare the synchronous and asynchronous case, and remark that anti-alignment of particles is no longer observed when a small critical amount of asynchronism is added

    Asynchronous cellular automata

    Get PDF
    This text has been proposed for the Encyclopedia of Complexity and Systems Science edited by Springer Nature and should appear in 2018.International audienceThis text is intended as an introduction to the topic of asynchronous cellular automata. We start from the simple example of the Game of Life and examine what happens to this model when it is made asynchronous (Sec. 1). We then formulate our definitions and objectives to give a mathematical description of our topic (Sec. 2). Our journey starts with the examination of the shift rule with fully asynchronous updating and from this simple example, we will progressively explore more and more rules and gain insights on the behaviour of the simplest rules (Sec. 3). As we will meet some obstacles in having a full analytical description of the asynchronous behaviour of these rules, we will turn our attention to the descriptions offered by statistical physics, and more specifically to the phase transition phenomena that occur in a wide range of rules (Sec. 4). To finish this journey, we will discuss the various problems linked to the question of asynchrony (Sec. 5) and present some openings for the readers who wish to go further (Sec. 6)
    corecore