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Foreword

This text has been proposed for the Encyclopedia of Complexity and Systems
Science edited by Springer Nature and should appear in 2018. Please refer to
the final online version for an up-to-date version (see http://www.springer.

com/us/book/9780387758886).

Article Outline

This text is intended as an introduction to the topic of asynchronous cellular
automata and is presented as a path. We start from the simple example of
the Game of Life and examine what happens to this model when it is made
asynchronous (Sec. 1). We then formulate our definitions and objectives to give
a mathematical description of our topic (Sec. 2). Our journey starts with the
examination of the shift rule with fully asynchronous updating and from this
simple example, we will progressively explore more and more rules and gain
insights on the behaviour of the simplest rules (Sec. 3). As we will meet some
obstacles in having a full analytical description of the asynchronous behaviour of
these rules, we will turn our attention to the descriptions offered by statistical
physics, and more specifically to the phase transition phenomena that occur
in a wide range of rules (Sec. 4). To finish this journey, we will discuss the
various problems linked to the question of asynchrony (Sec. 5) and present
some openings for the readers who wish to go further (Sec. 6).

Definition of the Subject

This article is mainly concerned with asynchronous cellular automata viewed as
discrete dynamical systems. The question is to know, given a local rule, how the
cellular automaton evolves if this local rule is applied to only a fraction of the
cells. We are mainly interested in stochastic systems, that is, we consider that
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the updating schemes, the functions which select the cells to be updated, are
defined with random variables. Although there exists a wide range of results
obtained with numerical simulations, we focus our discussion on the analyti-
cal approaches as we believe that the analytical results, although limited to a
small class of rules, can serve as a basis for constructing a more general theory.
Naturally, this is a partial view on the topic and there are other approaches to
asynchronous cellular automata. In particular, such systems can be viewed as
parallel models of computation ([[INTERNAL REF.]] See Th. Worsch’s article
in this encyclopedia) or as models of real-life systems. Readers who wish to
extend their knowledge may refer to our survey paper for a wider scope on this
topic [Fat14a].

1 Introduction

Cellular automata were invented by von Neumann and Ulam in the 1950’s to
study the problem of making artificial self-reproducing machines [Moo62]. In
order to imitate the behaviour of living organisms, the design of such machines
involved the use of a grid where the nodes, called the cells, would evolve ac-
cording to a simple recursive rule. The model employs a unique rule, which is
applied to all the cells simultaneously: this rule represents the “physics” of this
abstract universe. The rule is said to be local in the sense that each cell can only
see some subset of cells located at short distance: these cells form its neighbour-
hood. In von Neumann’s original construction, all the cells are updated at each
time step and this basis has been adopted in the great majority of the cellular
automata constructions. This hypothesis of a perfect parallelism is quite prac-
tical as it facilitates the mathematical definition of the cellular automaton and
its description with simple rules or tables. However, it is a matter of debate to
know if such a hypothesis can be “realistic”. The intervention of an external
agent that updates all the components simultaneously somehow contradicts the
locality of the model. One may legitimately raise what we could call the no-
chief-conductor objection: “in Nature, there is no global clock to synchronise
the transitions of the elements that compose a system, why should there be one
in our models?”.

However, this objection alone cannot discard the validity of the classical
synchronous models. Instead, one may simply affirm that the no-chief-conductor
objection raises the question of the robustness of cellular automata models.
Indeed, at some point, the hypothesis of perfectly synchronous transitions may
seem unrealistic but we cannot know a priori if its use introduces spurious
effects. There are some cases where a given behaviour of a cellular automaton
will only be seen for the synchronous case and there are also cases where this
behaviour remains constant when the updating scheme is changed. In essence,
without any information on the system, we have no means to tell what are the
consequences of choosing one updating scheme or the other.

If we have a robust model, changes in the updating may only perturb slightly
the global behaviour of a system. On the contrary, if this modification induces
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Figure 1: Configurations obtained with the α-asynchronous Game of Life for
three values of the synchrony rate α and the same initial conditions. (top): syn-
chronous updating, the system is stable at t = 50; (middle): small asynchrony
introduced, the system is still evolving at t = 100; (bottom): α = 1/2, the
qualitative behaviour of the system has changed.

a qualitative change on the dynamics, the model will be called structurally
unstable or simply sensitive to the perturbations of its updating scheme. A
central question about cellular automata is thus to know how to assess their
degree of robustness to the perturbations of their updating. Naturally, the
same questions can be raised about the other hypotheses of the model: the
homogeneity of the local rule, the regular topology, the discreteness of states,
etc. (see e.g. Problem 11 in Ref. [Wol85]).

1.1 A first experiment

In order to make things more concrete, we propose to start our examination
with a simple asynchronous CA. We will employ the α-asynchronous updating
scheme [FM05] and apply the following rule: at each time step, each cell is
updated with a probability α and is left in the same state with probability 1−α.
The parameter α is called the synchrony rate (see the formal definitions below)1.
The advantage of this definition is to control the robustness of the model by
varying the synchrony rate continuously from the classical synchronous case
α = 1 to a small value of α, where most updates will occur sequentially. We
thus propose to examine the behaviour of the α-asynchronous Game of Life.

1Note that from the point of view of a given cell, all happens as if between two updates
each cell was waiting a random time that follows a geometric law of parameter α.
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Figure 1 shows three different evolutions of the rule: the synchronous case
(α = 1), an evolution with a little asynchrony (α = 0.98) and an evolution with
a stronger asynchrony (α = 0.5).

The first observation is that the introduction of a small degree of asynchrony
does not modify the qualitative behaviour of the rule on the short term. However,
one can predict that the long-term behaviour of the rule will be perturbed
because it is no longer possible to observe cycles. For example, the configuration
with only three living cells in a row oscillates in the classical Game of life, but
these oscillations only exist with a synchronous updating and the configuration
evolves to a totally different pattern when this perfect simultaneity is broken.
Another important property to remark is that the new (asynchronous) system
has the same fixed points as the original (synchronous) system. In fact, this is
a quite general property that does not depend on the local rule. The reason is
simple: if a configuration is a fixed point of the synchronous system, it means
that all its cells are stable under the application of the local rule. Hence, if we
select a subset of cells for an update, this subset will also be stable. Reciprocally,
if any choice of cells gives a stable situation, then the whole system is also stable.

The second important observation regards the evolution with α = 0.5: the
global behaviour of the system is completely overwhelmed! A new stationary
behaviour appears, and a pattern which resembles a labyrinth forms. This
pattern is stable in some parts and unstable in some other parts of the grid.
We will not enter here into the details on how this stability can be quantified
but it is sufficient to observe that, in most cases, one observes that this pattern
remains a very long time.

1.2 Questions

It may be argued that these observations are not that surprising, because if one
modifies the basic definitions of a dynamical system, one naturally expects to
see effects on its behaviour. However, this statement is only partially true, as
this type of radical modifications is not observed for all the rules. In fact, as
Nakamura has shown, we can always modify a rule in order to make it insensitive
to the variations of its updating scheme [Nak74, Nak81]. Formally, this amounts
to show that any classical deterministic cellular automaton may be simulated
by an asynchronous one. By “simulated” we mean that the knowledge of the
evolution of the stochastic asynchronous system allows one to know the evolution
of the deterministic original rule with a simple transformation ([[INTERNAL
REF.]] See Th. Worsch’s article). The idea of Nakamura is that each cell should
keep three registers: one with its current state, one with its previous state, and
one with a counter that tells if its local time is late, in advance or synchronised
with the local time of its neighbours. There is of course an overhead in terms
of simulation time and number of states which are used, and one may want
to reduce this overhead as much as possible [LAPM04], but the point is that
there are asynchronous rules which will evolve as their synchronous deterministic
counterparts. As an extreme example, we can also think of the rule where each
cell turns to a given state independently of its neighbour: the global evolution
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is easily predicted.
Partial robustness can also be observed with some simple rules. For example,

let us consider the majority rule: cells take the state that is the most present
in their neighbourhood. Observing this rule on a two-dimensional grid with
periodic boundary conditions shows that it is robust to the variations of α:
roughly speaking, if we start from a uniform random initial condition, for 0.5 <
α < 1, the system seems to always stabilise quickly on a fixed point. For
smaller values of α the only noticeable effect is a slowdown of the converge
time. However, a modification also exists at the vicinity of α = 1: like for the
Game of Life, as soon as a little asynchrony is present, cycles disappear.

These experiments indicate that there is something about asynchronous
systems that deserves to be investigated. Since the first numerical simula-
tions [BI84], a great number of approaches have been adopted to gain insights
on asynchronous cellular automata. However, if we want to be convinced that
these systems can be studied and understood theoretically, and despite their
randomness, we need some analytical tools. The purpose of the lines that fol-
low is to give a few indications on how the question of asynchrony in cellular
automata can be dealt with with theoretical tools from computer science and
probability theory.

2 Defining asynchrony in the cellular models

Literally, a-syn-chronous is a word derived from the Ancient Greek ἀσυνχρονος,
which simply means: not-same-time. From this etymology, it follows that we
cannot speak of a single model of asynchrony in cellular automata but there
is an infinity of models. In fact, one is allowed to speak of an asynchronous
model as soon as there is some perturbation in the updating process of the
cells2.We voluntarily stay vague at this point in order to stress that one may
imagine a great variety of situations where some irregularity occurs on the way
the information is processed by the cells. For instance, we may examine what
happens if all the transitions do occur at each time step but where the cells
receive the state of their neighbours imperfectly.

In this text, we will restrict our scope to the most simple cases of asyn-
chronous updating.

2.1 Mathematical framework

Let L ∈ Zd be the set of cells that compose a d-dimensional cellular automaton.
The set of states that each cell may hold is Q. The collection of all states at
given time is called a configuration and the configuration space is thus QL.

Let N ∈ (Zd)k be the neighbourhood of the cellular automaton, that is, for
N = (n1, . . . , nk), ni represents the vector between the central cell and its i-th

2Note that asynchrony and asynchronism have been both used in the literature in an
equivalent way. We will in general use the former for the modification of the updating and
use the latter to designate a topic of research.
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neighbour.
The local function of a cellular automaton is a function f : Qk → Q which as-

signs to a cell c ∈ L its new state q′ = f(q1, . . . , qk), where the t-uple (q1, . . . , qk)
represents the state of the neighbours of a cell c.

Starting from an initial configuration x ∈ QL, the classical evolution of
the system gives a sequence of configurations that we denote by (xt)t∈N. This
sequence is obtained by the recursive application of the global rule F : QL → QL

defined with x0 = x and xt+1 = F (xt) such that:

∀c ∈ Z, xt+1
c = f

(
xtc+n1

, . . . , xtc+nk

)
.

Now, to define an asynchronous cellular automaton, we need to introduce
an updating scheme. Such a function takes the form U : L → P(L), where
P(S) denotes the parts of S, that is, the set of all subsets of S (also denoted by
2S). For a given time step t ∈ N, the set of cells that are updated at time t is
represented by U(t).

We obtain a new global rule, denoted by FU : N×QL → QL where FU(x, t)
represent the image of x at time t given the updating scheme U. The evolution
of (xt)t∈N starting from x ∈ QL is now defined with x0 = x and xt+1 = FU(xt)
such that:

∀c ∈ Z, xt+1
c =

{
f
(
xtc+n1

, . . . , xtc+nk

)
if c ∈ U(t),

xtc otherwise.

The type of function U defines the type of asynchronism in use. The first
issue of distinction is between deterministic and stochastic (or probabilistic)
functions. In this text we will focus on stochastic functions. Indeed, since asyn-
chronism is often thought of an unpredictable aspect of the system, stochastic
systems have been more intensively studied. One finds only a small number
of studies which use deterministic systems. Examples of such studies can be
found in Ref. [SdR99, CGN05] where the authors have considered for exam-
ple the effects caused by updating cells sequentially from left to right. As one
may expect, such approaches often lead to curious phenomena: the information
spreads in a non-natural way because a single sequence of updates from left
to right suffices to change the state of the whole system. More interesting are
even-odd updating schemes where one updates the even cells and, in the next
step, the odd cells. A famous example of such model is the Q2R model [Vic84]:
although the local rule of this system is deterministic, using a random initial
condition makes it evolve with the same density as the Ising model (see e.g.
Ref. [KT15] for a recent development).

In fact, we can remark that in general it is not difficult to transform an
asynchronous system into a synchronous one: in many cases, adding more states
is sufficient. For example, for the even-odd updating, we may mark the even and
odd cells with a flag up and down, respectively, and make this flag “flip” at each
time step. Similarly, an ordered updating may be simulated in a synchronous
model by moving a token in a given order. However such direct transformations
are not always possible: for example, Vielhaber has proposed an original way of
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achieving computation universality by selecting the cells to update [Vie13] and
this construction cannot be transformed into a deterministic cellular automaton
by the mere addition of a few internal states.

2.2 Randomness in the updating

In the case where the updating scheme U is a random variable, then the evolution
of the system is a stochastic process, and, if U does not depend on time, it is a
Markov chain (a memoryless system). In order to be perfectly rigorous in the
formal description of the system, advanced tools from probability theory are
necessary. A good example on how to properly use these mathematical objects
and their properties can be found in a survey by Marcovici and Mairesse [MM14].
However, for the sake of simplicity, one may still use the usual notations and
consider that the sequences (xt)t∈N are formed by configurations rather than
probability distributions.

We can now define the two major asynchronous updating schemes:
• α-asynchronous updating scheme: Let α ∈ (0, 1] be constant called the syn-
chrony rate. Let (Bti)i∈L,t∈N be a sequence of independent and identically dis-
tributed Bernoulli random variables of parameter α. The evolution of the system
with an α-asynchronous updating scheme is then given by:

x0 = x and ∀i ∈ Z, xt+1
i =

{
f
(
xti+n1

, . . . , xti+nk

)
if Bti = 1,

xtc otherwise.

• fully asynchronous updating scheme: In the case where L is finite, let
(St)t∈N be a sequence of independent and identically distributed random vari-
ables that select an element uniformly in L. The evolution of the system is

given by: x0 = x and ∀i ∈ Z, xt+1
i =

{
f
(
xti+n1

, . . . , xti+nk

)
if i = St,

xtc otherwise.

Note that in most cases, authors do not use the indices i and t for (Bti) or
(St) and simply consider that there is one function that used at each time step
and for each cell.

We do not enter here into the details of how we can generalise these def-
initions (see e.g. Ref. [DFMM13]). We point the work of Bouré et al. on
asynchronous lattice-gas cellular automata to underline that adding asynchrony
to the cellular models which have more structure than the classical ones can be
a non-trivial operation if one wants to maintain the properties of these models
(e.g. conservation of the number of particles) [BFC13a]. Similar difficulties
arise when agents can move on the cellular grid and one needs to define some
procedures to solve the conflicts that may occur when several agents want to
modify simultaneously the same cell [CF10, BF12].

3 Convergence properties of simple binary rules

We have seen that a central question in the study of asynchronous cellular
automata was to determine their convergence properties. In particular one may
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Table 1: Notation by transitions. left: table of transitions and their associated
labels. right: symmetries of the ECA space (see text for explanations)

A B C D
000 001 100 101

010 011 110 111

E F G H

A B C D

E F G H

conjugation

reflexion

r+c

wonder, given a simple binary rule, what we can predict about its possible
behaviour. Is it converging to a given fixed point? In which time in average?
And if so, what kind of “trajectory” the system will follow to attain a stable
state (if any)? The lines that follow aim at presenting the mathematical tools
to answer these questions.

3.1 Expected convergence time to a fixed point

Recall that one major modification caused by the transformation of a cellu-
lar automaton from synchronous to asynchronous updating is the removal of
cycles: cycles are replaced by some attractive sets of configurations (see be-
low for a more precise description). Let us examine this property on a simple
case. We work on a finite one-dimensional system and denote the set of cells
by L = Z/nZ, where n is the number of cells. We employ a fully asynchronous
updating scheme described by a sequence of independent and identically dis-
tributed random variables (St) which are uniform on L (one cell is selected at
each time step). The local rule depends only on the state of the cell itself and
its left and right neighbours, we have: N = {−1, 0, 1}. Recall that for an initial
condition x ∈ QL, the evolution of the system is thus described by (xt)t∈N such
that: x0 = x and xt+1 = F (xt) such that ∀i ∈ L, xt+1

i = f(xti−1, x
t
i, x

t
i+1) if

i = St and xt+1
i = xti otherwise.

To evaluate the converge time of given rule, we proceed as in the theory of
computation and define the “time complexity” of this rule as the function which
estimates the amount of time taken by the “most expensive” computation of
size n [(see Th. Worsch’s article in this encyclopedia)]. Let F denote the
set of fixed points of a rule and let T (x) denote the random variable which
represents the time needed to attain a fixed point: T (x) = {min t : xt ∈ F}.
In order to have a fair comparison with the synchronous update, we consider
that one time step corresponds to n updates and we introduce the rescaled time
τ(x) = T (x)/n. The “complexity measure” of a rule is than given by the worst
expected convergence time (WECT): WECT (n) = max

{
E{τ(x)};x ∈ QL

}
.

3.2 Two notations for ECAs

Following a convention introduced by Wolfram, it is common to identify each
ECA f with a decimal code W (f) which consists in converting the sequence
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of bits formed by the values of f to a decimal number: W (f) = f(0, 0, 0).20 +
f(0, 0, 1).21 + · · · + f(1, 1, 1).27. We now introduce another notation of ECA
rules, which consists in identifying an ECA rule f with a word which consists
in a collection of labels from {A,B, . . . ,H} where each label identifies an active
transition, that is, a couple

(
(x, y, z), f(x, y, z)

)
such that f(x, y, z) 6= y. The

mapping between labels and transition is given in Table 1.
For example, let us consider the XOR rule f(x, y, z) = x ⊕ y ⊕ z, where ⊕

denotes the usual XOR operator. The decimal code associated to this rule is
150. The active transitions of this rule are 001→ 1 (B), 100→ 1 (C), 011→ 0

(F) and 110 → 0 (G). The four other transitions are passive, that is, they do
not change the state of the central cell. We thus obtain the new code: BCFG.

Knowing the transition code of a rule, one can easily deduce the symmetric
rules: to obtain the rule where the left and right directions are permuted, it
is sufficient to exchange the letters B and C and to obtain the symmetric rule
where the states 0 and 1 are permuted, on exchanges the letters A and E, B and
F, C and G and H (see Tab. 2-right)

In the case of a fully asynchronous updating, the notation by transitions also
allows us to decompose the behaviour of the local rule as follows:

• If a rule does not have A (resp. H) in its code, the size of a 0-region
(resp. a 1-region) may increase or decrease by 1 but this region cannot be
broken.

• Transitions B and F control the movements of the 01-frontiers: B (resp.
F) moves this frontier to the left (resp. to the right). If both transitions
are present, the 01-frontier performs a non-biased random walk.

• Similarly, transitions C and G control the movements of the 10-frontiers.

• Transition D (resp. E) controls the fusion of 1-regions (resp. 0-regions):
the absence of D (resp. E) implies that the 0-regions (resp. 1-regions)
cannot disappear.

These properties are summed up on Tab. 2-left.
In addition, the code by transitions can be used to produce a complemen-

tary useful view on configurations by transforming a configuration x ∈ QL in
a configuration x̃ ∈ {a, . . . , h}L, where each cell is labelled with a, b, ... if the
transition A, B, ... applies on it. An example of such transformation is shown
on Fig. 2-left. This transformation can be done directly but it also interesting
to consider the de Bruijn graph (or diagram), which allows one to do this trans-
formation by reading one symbol at time, from left to right, and by following
the edge with the label that was read (see Fig. 2-right). This graph is useful
for determining various properties of cellular automata. For example, the fixed
points of rule are made by the cycles which do not contain a node with an active
transition. For any configuration x, if we write by a, b, ... the respective number
of a’s, b’s, ... of x̃, then the following relations can be easily obtained: b = c;
f = g; |x|01 = b + d = e + f ; |x|10 = c+ d = e+ g ; |x|01 = |x|10.

9



Table 2: left : Summary of the effect of each transition on a fully asynchronous
ECA. right: Summary of the combinations of two (active or inactive) transitions.

A stability of 0-regions
B 01-frontiers move left
C 10-frontiers move right
D absorption of 0-regions
E absorption of 1-regions
F 01-frontiers move right
G 10-frontiers move left
H stability of 1-regions

no A+ no H doubly quiescent rule

B+ F random walk of the 01-frontiers

C+ G random walk of the 10-frontiers

0011001111100

abfgcbfhhhgca

↑
0011001011100

abfgcbedfhgca

a
000

 0 

b
001

 1

e
010

0  

f
011

1

c
100

0

d
101

  1

g
110

  0  h
111

1  

0  

1  
0

1 

0

1  0

 1

Figure 2: (left): Example of two binary configurations and their images by the
transition code. The upper configuration is obtained by updating the lower
configuration on the cell indicated with an arrow. (right): De Bruijn graph
with the correspondence between binary sequences of length 3 and transitions
A, . . . ,H. The label on the edges show the next letter that in input when reading
a binary sequence from left to right.
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Figure 3: Space-time diagrams showing the evolution of the shift rule for a ring
of n cells, with n = 20. Cells in blue and white respectively represent states 0

and 1. Time goes from bottom to top. Each row shows the state of the system
after n random updates. This convention is kept in the following.

ε ε

ε εε

1 1

0 1 2 n−1 n

1−2ε 1−2ε 1−2ε

ε

Figure 4: Representation of the Markov chain that counts the number of 1’s.
The constant ε = 1/n represents the probability to update a cell at a given time
step.

3.2.1 A starting example

Let us take the shift rule f(x, y, z) = z as a first example of ECA. The wolfram
code and the transition code of this rule is 150:BCFG. As it can be seen from
the space-time diagrams shown on Fig. 3, although the local rule is elementary,
the evolution of the system is quite puzzling at first sight. The diagrams show
that, starting from the same initial condition, the system may reach either the
fixed point 0 = 0L or the fixed point 1 = 1L, and that the convergence time is
subject to a high variability. A little close-up on the behaviour of the rule allows
us to discover that the number of regions of 0’s or 1’s can only decrease. Indeed,
it is impossible to create a new state inside a region of homogeneous state. More
precisely, a change of state can only occur on the boundaries between regions:
if such a boundary is updated, it moves one cell to the left.

Let us examine what happens for an initial condition x ∈ QL with only two
regions: we have |x|01 = 1, where |x|01 is the function which counts the number
of occurrences of the pattern 01 in x. To calculate the probability to reach a
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given fixed point, we introduce the stochastic process (Xt) which counts the
number of 1’s of a configuration: Xt = |xt|1. where |x|1 is the function which
counts the number of occurrences of 1’s. It can easily be verified that (Xt) is a
Markov chain whose graph is shown on Fig. 4. Note that this is not immediate
and this property is not true for any initial condition. The values Xt = 0
and Xt = n are the absorbing states of the Markov chain and represent the
convergence of the asynchronous cellular automaton to its respective fixed points
0 and 1. We can thus calculate the probability p1(k) to reach the fixed point 1
given an initial condition x such that |x|1 = k. This can be done by recurrence
by noting that p(0) = 0, p(n) = 1 and p(k) = εp(k−1)+(1−2ε)p(k)+εp(k+1),
where ε = 1/n is the probability to update a cell. The solution is p(i) = εi = i/n.
In words, the probability to reach the fixed point 1 is exactly the density of the
initial configuration.

Let us now estimate the average number of time steps that it will take to
reach one of the two fixed points. Recall that: T(x) = min{t ∈ N : xt ∈
{0,1}}. As the Markov chain is finite and has two absorbing states, T is almost
surely finite. The average of T depends only on the number of 1’s of the initial
condition. With a small abuse of notation, we can denote by Ti the average
convergence time from an initial condition with i cells in state 1, we have the
following recurrence equation: T0 = Tn = 0 and ∀i ∈ {1, . . . , n− 1},

Ti = ε(Ti−1 + 1) + (1− 2ε)(Ti + 1) + ε(Ti−1 + 1) (1)

= 1 + εTi−1 − (1− 2ε)Ti + εTi+1 (2)

The solution of this system is Ti = i(n − i)/2ε. Since ε = 1/n, we can write
∀i ∈ {0, . . . , n}, Ti ≤ n3/8; in other words, for the configurations with only two
zones, the average number of updates needed to attain a fixed point is at most
cubic in n.

Martingales

How can we deal with the other configurations? If we start from a configuration
x with k 1-regions and k > 1, the probability to increase or decrease by 1 the
number of 1’s is kε. The evolution of the system can no longer be described
by the Markov chain of Fig. 4. Indeed, the value ε needs to be replaced by
ε′ = kε but, as k is not constant, this process is no longer a Markov chain. As
seen on Fig. 4, the frontiers of the regions will perform random walks until a
region disappears, which will make ε′ decrease again, and so on until we reach
one of the two fixed points. In order to determine the convergence time τ(x),
one could estimate the average “living time” of a configuration with k-regions.
However, this is a difficult problem because this living time strongly depends
on the size of each region.

It is easier to note that the process (Xt) defined with Xt = |xt|1 is a martin-
gale, that is, a stochastic process whose average value is constant over time.
The theory of martingales allows us to find the probability p1(x) to reach
the fixed point 1 from x and the average time of convergence E{τ(x)}. For
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the sake of brevity, we skip the details of the mathematical treatments and
write down directly the results that are exposed in Ref. [FMST06]: (a) the
probability of reaching the fixed point 1 is still equal to the initial density:
p1(x) = |x|1/n, (b) the rescaled average time also scales quadratically with n:
E{τ(x)} ≤ |x|1(n− |x|1)/2.

We thus have an upper bound on the WECT which is WECT (n) ≤ n2/8
and, considering the initial condition x = 0n/21n/2, we obtain the lower bound:
WECT (n) ≥ n2/8. We can thus write WECT (n) = O(n2) where O expresses
the equivalence up to a constant. We thus say that the shift has a quadratic
convergence time or, for short, that it is quadratic.

A relationship with computational problems

In fact, since the convergence of the asynchronous shift depends on the initial
density, one may consider this process as a particular kind of decentralised
computation. For the sake of brevity, we will not develop this point here but
we simply indicate to the readers interested by this issue that similar stochastic
rules have been used to solve the density classification problem (see e.g. Ref.
[Fuk02, Fat13b, dO14] and de Oliveira’s article in this encyclopedia).

3.3 From the shift to other quadratic rules

We now examine step by step how to generalise the example of the asynchronous
shift given above to a wider class of rules.

With the decomposition described above, we can readily deduce that the
Markov chain described for counting the number of 1’s for the shift rule (BDEG)
also applies for rule CG, for which the 10-frontier performs a non-biased random
walk and for rule BCDEFG, for which the two frontiers perform a random walk.

In a second time, we can ask what happens if we change the code of these
rules by removing the transition D of their code, that is, we set 101 → 0

and make the transition D inactive. This transformation implies that the 0-
regions can no longer disappear while the 1-regions may disappear if an isolated
1 is updated (010 → 0). As a consequence, the fixed point 1 is no longer
reachable and the system will almost surely converge to the fixed point 0 for
an initial condition different from 1. The system will thus most of the time
behave as a regular martingale but sometimes it will “bounce” on an isolated
0. Is the average convergence time still quadratic? The answer is positive:
even though the behaviour cannot be described (simply) by a martingale, it is
possible to “save” the previous results and still obtain a quadratic scaling of the
WECT. Interested readers may refer to our study on fully asynchronous doubly
quiescent3 rules for the mathematical details [FMST06].

3A quiescent state is a state q such that the local rule f obeys f(q, . . . , q) = q.
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Figure 5: Space-time diagrams showing the evolution of four rules with a
quadratic worse expected convergence time (WECT).

3.4 Functions with a potential

In the previous paragraph, we started from the shift rule (BDEG), showed that
it had a quadratic WECT, an then indicated that five other rules had a similar
qualitative behaviour and a quadratic WECT. The other rules were obtained by
making the transition D inactive or by changing the behaviour of the frontiers,
as long as this movement remained a non-biased random walk.

We now propose to examine what happens if we dare to “touch” a transition
that breaks the random movement of the frontiers. Concretely, let us make the
transition B inactive: we obtain the minimal representative rule DEG (168). The
evolution of this rule is displayed on Fig. 6; it can be seen that the evolution
of the rule is less “spectacular” than the quadratic rules. The size of the 1-
regions regularly decrease until the all the regions disappear and the system
reaches the fixed point 0. It is easy to see that in the case where the initial
condition does not contain an isolated 0, the evolution of the number of 1’s
is a non-increasing function. Now, let us consider the function φ : QL → N
defined by φ(x) = |x|1 + |x|01. Writing (Xt) = φ(xt), one can verify that the
evolution of (Xt) is non-increasing. Indeed, if a transition D is applied, the
number of 1’s increases by 1 but the number of regions also decreases by 1.
Moreover, we have that Xt = 0 implies that xt = 0. The function φ can thus be
named a potential: it is a positive, non-increasing function of the current state
of the system, which equals zero when the system has attained its attractive
fixed point. This argument can be applied for showing a linear WECT for the
following four rules (G is active): 136:EG, 140:G, 168:DEG, 172:DG. and the
following four rules (F and G are active): 128:EFG, 132:FG, 160:DEFG, 164:DFG.

Interestingly, a similar type of convergence can also be obtained by adding
an active transition to the shift rule. For example, let us consider ECA BDEFG
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Figure 6: Space-time diagrams showing two evolutions of two rules with a linear
worse expected convergence time (WECT).

(162). Its evolution is shown on Fig. 6. One should observe that the 01-frontiers
perform a non-biased random walk while the 10-frontier tends to move to the
left. This means that the 1-regions have a tendency to decrease, but their
evolution is no longer monotonous as in the case of rule DEG. It can be shown
that if we take back the function φ(x) = |x|1+|x|01 and Xt = φ(xt), then (Xt) is
a super-martingale, that is, its average value decreases in average. This property
and other conditions ensuring that it cannot stay too “static” imply that its
convergence time which scales linearly with the ring size n [FMST06]. Indeed,
for any configuration that is not a fixed point the quantity E{Xt+1 − Xt|xt}
is negative. The same method can be applied for showing the convergence in
linear time for the rule 130:BEFG.

Non-polynomial types of convergence

For the sake of brevity, we will not go here into the details but only indicate
the other classes of convergence that were exhibited. Readers may consult
Ref. [FMST06] for detailed arguments.

• The rules 200:E and 232:DE have a logarithmic WECT. This can be shown
with the same techniques as for the convergence of the coupon-collector
process [FMST06].

• The rule 154:BCEG has an exponential WECT. This comes from a kind
of paradox: the rule has a tendency to increase the number of 1’s but its

15



t+ 1

t
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Figure 7: New phenomena observed with the α-asynchronous updating of linear
CA (from the work of Regnault et al. [FRST06]).

only fixed point 1 is not reachable. The only way it can converge is by
reaching the fixed point 0, a phenomenon that is very unlikely.

• The rules 134:BFG, 142:BG, 156:CG and 150:BCFG are non-converging.
This is because in all these rules transitions D and E are inactive and, at
the same time, the frontiers are not static.

Other elementary rules

The question of classifying the other ECA rules, where no state or only one state
is quiescent, is still open. Some conjectures have been stated from experimental
observations but they still deserve an in-depth analysis [Fat13a]. In particular,
there are currently only partial results for all the rules which are conjectured to
converge “very rapidly”, that is, in logarithmic time [Fat14b].

3.5 From fully asynchronous to α-asynchronous updating

What happens if one uses a partially synchronous updating scheme instead of a
totally asynchronous one? Regnault et al. have extended the convergence results
of the doubly-quiescent ECA to the case of α-asynchronous updating [FRST06].
The possibility of having simultaneous updates of neighbouring cells creates
additional “local movements” and the behaviour of these rules is more difficult
to analyse. In particular, the authors have identified four phenomena that are
specifically related to the α-asynchronous updating: the shift, the fork, the
spawn, the annihilation. These phenomena are shown on Fig. 7.

The authors developed an interesting analytical framework (potential func-
tions, masks, etc.) and succeeded in giving bounds on the convergence of 19
(minimal) doubly-quiescent rules, leaving the question open four five other rules.
the various rules show different kind of scaling relations of the WECT, depend-
ing on α and n. If we consider the dependence on n only, the families of
functions are the same as those obtained for fully asynchronous dynamics, that
is, logarithmic, linear, quadratic, exponential and infinite. However, there are
rules whose type of converge varies from the fully asynchronous updating to
α-asynchronous updating. For example, rule 152:CEG, which is quadratic with
a fully asynchronous updating (see above), becomes linear for α-asynchronous
updating. Two rules, namely ECA 146:BCEFG and 178:BCDEFG were conjec-
tured to display a phase transition: their type of converge may change from
polynomial to exponential depending on whether the α is greater or lower than
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a particular critical value. This property was partially proved by Regnault in a
thorough study of ECA 178, were the polynomial and exponential convergence
times were formally obtained for extremal values of the synchrony rate [Reg13].
Ramos and Leite recently studied a generalisation of this model where the asyn-
chronous case appears as a special case of the family of probabilistic cellular
automata that are studied [RL17].

3.6 Two-dimensional rules

The study of the convergence properties of simple two-dimensional rules has
been carried out for the so-called totalistic cellular automata, where the local
rule only depends on the number of 1’s in the neighbourhood [FG09]. For the von
Neumann neighbourhood (the cell and its four nearest neighbours), there are 26

such rules. Their WECT were also analysed for the fully asynchronous updating
and all rules but one were found to fall into the previous classes of convergence.
One remarkable exception was given by the epidemic rule, where a 0 turns into
a 1 if it has a 1 in its neighbourhood and then always remain a 1. This rule
has a WECT which scales as Θ(

√
n). Even though this scaling property can

be intuitively understood from the dynamics of the rule, which merely amounts
to “contaminating” neighbouring cells, proving the class of convergence was a
difficult task. It is only recently that a proof has been proposed by Gerin, who
succeeded in applying subtle combinatorial arguments to obtain upper and lower
bounds on the time of convergence [Ger17].

The minority rule received a special attention. Indeed, when updated asyn-
chronously, it has the ability to create patterns which can take the form of
chequerboard or stripes. The behaviour of this rule with an asynchronous up-
dating was analysed in the case of von Neumann and Moore neighbourhood
(the cell and its eight nearest neighbours) [RST09, RST10]. Regnault et al.
noticed that the convergence to the fixed point was not uniform: the process
can be separated in two phases: first the “energy” decreases rapidly, and then
the system stays in a low-energy state where it will progressively approach the
fixed point by moving the unstable patterns thanks to the random fluctuations.
It is an open question to know to which extent this type of behaviour can be
found in other contexts, e.g., lattice-gas cellular automata [BFC13b].

The convergence properties can thus be determined quite precisely, but only
for a family of simple binary cellular automata rules. It is an open problem
to find such analytical tools. As far as the α-asynchronous updating is con-
cerned, the results are even more restricted. As we will see in the following, this
not is so surprising because the behaviour of some rules sometimes require the
introduction of tools from advanced statistical physics.
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4 Phase transitions induced by α-asynchronous
updating

4.1 The Game of Life

We propose to come back to the phenomenon observed on Fig. 1 (see p. 3). Blok
and Bergersen were the first authors to give a precise explanation of the change
of behaviour in the Game of Life, the phenomenon that was described in the
introductory part of this article. They identified the existence of a second-order
phase transition4 which separates two qualitatively different behaviours: a high-
density steady state with vertical and horizontal stripes and low-density steady
state with avalanches [BB99]. They measured the critical value of the synchrony
rate at αc ≈ 0.906 and showed that near the critical point, the stationary
density d∞ obeyed a power law of the form d∞ ∼ (α − αc)β . It is well known
in the field of statistical physics that the values taken by the power laws are
not arbitrary and that various systems of unrelated fields may display the same
critical exponents ([(See F. Bagnoli’s article in this encyclopedia)]. The class of
systems which share the same values of exponents is called a universality class
and in the case of the Game of Life, Blok and Bergersen found that its phase
transition was likely to belong to the universality class of directed percolation
(also called oriented percolation or Reggeon field theory).

These measures were later confirmed by a set of more precise experiments [Fat10]
and the critical value of the synchrony rate was measured at αc ≈ 0.911. More-
over, for the Game of Life, the critical phenomenon was shown to be robust
to the introduction of a small degree of irregularity in the grid. This phase
transitions was also observed for other Life-like rules [Fat10].

4.2 Elementary cellular automata

In the first experiment where the whole set of ECAs was examined with an α-
asynchronous updating [FM05], some rules were observed to display an abrupt
variation of the density for a given value of the synchrony rate α. This phe-
nomenon was later studied in detail and this critical phenomenon was identified
for ten (non-equivalent) rules. As for the Game of Life, we are here in presence
of second-order phase transitions which belongs to the directed percolation uni-
versality class [Fat09]. The values of the measured critical synchrony rates are
reported on Tab. 3.

It is a puzzling question to know why these ten rules are specifically pro-
ducing such critical phenomena. Some insights to this question were given in
a study of the local-structure approximations of the rules, that is, a generali-

4Informally, in statistical physics, phase transitions are defined by the existence of a dis-
continuity in the values taken by a macroscopic parameter, called the order parameter, when
system is submitted to a continuous variation of a control parameter. First-order transitions
are those for which the discontinuity appears directly on the order parameter while second-
order phase transitions (or continuous phase transitions) are those where the derivative of the
order parameter is infinite.
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Table 3: Critical synchrony rates for the ECA with a phase transition.

ECA 6 18 26 38 50 58 106 134 146 178
αc 0.283 0.714 0.475 0.041 0.628 0.340 0.815 0.082 0.675 0.410
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Figure 8: Local-structure approximations obtained for various approximation
levels of order k (see Ref. [FF15] for details). For the sake of readability of
the results, the cases k = 7 and k = 8 are omitted. The plot in red (label
“exp”) shows the experimental steady-state density obtained for a ring size of
n = 40 000 cells after 10 000 time steps.

sation of the mean-field approximation to correlations of higher order [FF15].
This study revealed that it was possible to predict the occurrence of a phase
transition, but it was not possible to use it to correctly approximate the value of
the critical synchrony rate. Another possible approach would be to analyse the
branching-annihilating phenomenon in a specific way, with small-size Markov
chains for instance, but this remains an open path of research.

5 Other questions related to the dynamics

In order to broaden our view of asynchronous cellular automata, we now briefly
mention some other problems which have been studied with analytical tools.
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Table 4: Wolfram codes and transition codes of the 16 recurrent rules (from
Ref. [FSD17]). The two seprate rules are recurrent for n 6= 3.

35:ABDEFGH 38:BDFGH 43:ABDEGH 46:BDGH
51:ABCDEFGH 54:BCDFGH 57:ACDEGH 60:CDGH
62:BCDGH 105:ADEH 108:DH 134:BFG
142:BG 150:BCFG 156:CG 204:I

33:ADEFGH 41:ADEGH
.

5.1 Reversibility

The question of reversibility amounts to know if it is always possible to “go
back in time” and to know if any configuration has a unique predecessor. This
question is undecidable in general but there are some sets of rules for which one
can tell whether a rule is reversible or not (see Ref. [Mor08] for a survey on
this question). In the context of random asynchronous updating, the question
cannot be transposed in a direct way because the evolution of the system is not
one-to-one (otherwise we would have a deterministic system).

To date, two different approaches have been considered for finite systems.
Wacker and Worsch proposed to examine the transition graph of the Markov
chain of the asynchronous system [WW13]. A rule is said to be phase-space
invertible if there exists another rule – possibly itself – whose transition graph
is the “inverse” of the graph of the original rule. By “inverse” it is meant that
the directions of the transitions are reversed. In other words, the probabilities
to go from x to y are identical if one permutes x and y. Interestingly, the
authors show that the property of being phase-space invertible is decidable for
one-dimensional fully asynchronous cellular automata.

Another approach has been proposed by Sethi et al.: to interpret the re-
versibility of a system as the possibility to always back to the initial condi-
tion [SFD14]. The problem then amounts to deciding the recurrence property
of the Markov chain. This allows the authors to propose a partition of the
Elementary Cellular Automata according to their recurrence properties and to
show that among the 88 non-equivalent rules, there are 16 rules which are re-
current for any ring size greater than two and 2 rules which are recurrent for
ring sizes greater than three [FSD17]. These rules are listed in Tab. 4. For
the recurrent rules, the structure of the transition graph was analysed as well
as the number of connected components of this graph, that is, the number of
communication classes of the rules. It was found that the number of classes
of communication varies greatly from one rule to another: some rules have an
exponential number, while other have a constant number ; the most interesting
examples were obtained for the rules with an “intermediary” behaviour. For
example for rule 105:ADEH, the number of communication classes is 2 for an
odd ring size n and is equal to n/2 + 3 when n is divisible by 4 and to n/2 when
n is even and not a multiple of 4. It is an open question to generalise these
results to other types of rules or to other types of updating schemes.
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These results are encouraging and it is rather pleasant to note that contrarily
to the problem of convergence seen above, deciding the recurrence properties
of an ECA can be achieved. It is thus interesting to see to which extent these
results apply to a broader class of systems, including infinite-size systems.

5.2 Coalescence

In the experimental study of the α-asynchronous ECA [FM05], a strange phe-
nomenon was noticed for ECA 46, almost by chance: though this rule does not
converge to a fixed point and remains in a chaotic-like steady state, its evolu-
tion does not seem to depend on the initial condition. All seems to happen as
if the evolution of the rule was only dictated by the sequence of updates that
is applied. This phenomenon, named coalescence, can be observed on Fig. 9:
if we start from two different initial conditions of the same size and apply the
same updates on the two systems, they quickly synchronise and adopt the same
evolution. This is a particular kind of synchronisation where no desynchronisa-
tion is possible: after the coalescence has occurred, the two trajectories remain
identical as the local rules are deterministic. The question is to know under
which conditions coalescence happens and how long does it take in average for
two different initial conditions to “merge” their trajectories.

Rouquier and Morvan have studied experimentally this phenomenon for the
88 ECA with α-asynchronous updating [RM09]. They discovered an unexpected
richness of behaviour: some rules coalesce rapidly, other slowly, some never
coalesce, some even display phase transitions, etc. Insights have been given by
Francès de Mas on this question and a classification of the convergence time has
been given from both the observation of space-time diagrams and an analysis
of the behaviour [FdM17]. It is still an open question to provide a complete
mathematical analysis of these systems and to issue a proof that coalescence
can indeed happen in a linear time with respect to the ring size.

5.3 Other problems

There are many other problems which have led to various interesting experi-
mental or theoretical works. For instance, Gacs [Gác01], and then MacAuley
and Mortveit [MMM08, MM10, MM13], have provided a deep analysis on the
independence of the trajectories of an asynchronous with regard to the up-
dating sequence. Chassaing and Gerin analysed the scaling relationships that
would lead to an infinite-size continuous framework [CG07]. This framework
is also analysed in detail by Dennunzio et al., who examined how the theory
of measure can be applied to one-dimensional systems defined on an infinite
line [DFMM13, DFM+17].

As an example of a possible application of the use of these dynamical sys-
tems, we mention the work of Das et al., who proposed to use such models for
pattern classification [SRD16] and the work of Takada et al., who designed asyn-
chronous self-reproducing loops [TIPM07a]. These are only some entry point to
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Figure 9: Rapid coalescence phenomenon for ECA 46 with fully asynchronous
updating. The same updates are applied on two systems with two different
random initial conditions (left) and (middle). The right diagram shows the
agreement and disagreement of the two systems. Cells in white and light grey
respectively show agreement on state 0 or 1, while red and green show disagree-
ment (the order is not important).

the literature on this topic and we refer again to our survey paper for a wider
scope [Fat14a].

6 Openings

We have seen that the randomness involved in the asynchronous updating create
an amazing source of new questions on cellular automata. After more than two
decades of continued efforts, this topic shows signs of maturity and, although
it remains in large part a terra incognita, there are some insights on how asyn-
chronous cellular automata can be studied with a theoretical point of view. A
set of analytical tools are now available and when the analysis fails to answer all
the question, one can carry out numerical simulations. Readers should now be
convinced that asynchronous cellular automata are by no means some “exotic”
mathematical objects but constitute a thriving field of research. The elements
we presented here are only a small part of this field and should be completed
by a more extensive bibliographical work. Before closing this text, we want to
present a few questions that are currently investigated.

Defining asynchrony

As mentioned in the introduction, asynchrony is a concept that can be defined
with a great variety of forms. For example, the notion of α-asynchronous up-
dating scheme needs to be generalised to go beyond the simple homogeneous
finite case. This has led to propose to use some measure-theoretic tools to de-
fine m-asynchronous cellular automata to include the cases of non-homogeneous
probabilities of updating, infinitesimal ones, etc. [DFM12, DFMM13].
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To complete this point, let us underline that Bouré et al. have proposed to
examine the case where the randomness occurs not on the moments of updat-
ing, but on the possibility to miss the information from one or several neigh-
bours [BFC12]. Interestingly, the study of these new updating schemes, named
β- and γ-asynchronous updating schemes, show that their behaviour partially
overlaps with α-asynchronous systems but also reveals some novel and unex-
pected behaviours (e.g., other rules show a phase transitions).

Asynchronous models

The theoretical results obtained so far do not tell us what is a good model of
asynchrony in general. Since cellular automata are defined with a discrete of
time and space, it is not straightforward to decide a priori to use a synchronous
updating, or a fully asynchronous one, or a partially synchronous one. In fact,
the most reasonable position would be to test various updating schemes on a
rule and to examine if it is robust or sensitive to these modifications. Although
this critical attitude has been quite rare so far, a good example of such a study
has been provided by Grilo and Correia, who made a systematic study of the
effects of the updating in the spatially-extended evolutionary games. This ques-
tion rose after the criticisms made by Huberman and Glance [HG93] to the
model proposed by Nowak and May [NM92]. We think that exploring more sys-
tematically these issues on real-world models could help us understand to which
extent the simplifications operated in a model are justified or are a potential
source of artifacts (see Ref. [Fat14a] for other examples).

Experimental approaches and theoretical questions

The questions of how to measure the behaviour of asynchronous systems is of
course primordial. Among the various approaches, let us mention that Silva and
Correia have shown the importance of taking into account the time-rescaling
effects when using experiments [SC13]. Louis has underlined that the efficiency
of a simulation may greatly vary depending on the different regimes that may
occur in a simulation [Lou15]. Recently, Bo lt et al. have raised the problem
of identification: if one is given a space-time diagrams with missing parts, how
can one find the rule which generated this piece of information? [BWBB16].
[(See also A. Adamatzky’s article in this encyclopedia for the general problem
of identification.)].

New models of computation

As mentioned earlier, it is no surprise if the computing abilities of general asyn-
chronous cellular automata are the same as those of their deterministic coun-
terparts. However, as shown by various authors, the question becomes much
more delicate if one asks how to simulate an asynchronous system by another
asynchronous system or if one wants to design asynchronous systems which hold
good computing abilities and use a limited number of states [TIPM07b, Wor13].
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On the technological side, let us mention the work of Silva et al. on modelling
the interactions between (static) robots which need to synchronise [SCC15].
Lee, Peper and their collaborators, who aim at developing asynchronous cir-
cuits which are designed with simple local rules [PLAM03]. Such Brownian
cellular automata [LP08] exploit the inherent fluctuations of the particles to
perform asynchronous computations [PLI10, LPLG16]. They represent a po-
tential source of major technical innovations, in particular with the possibility
of implementing such circuits with DNA reaction-diffusion systems [YIP+17] or
Single Electron Tunnelling techniques [LPC+16].
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[BFC13b] Olivier Bouré, Nazim Fatès, and Vincent Chevrier. A robustness
approach to study metastable behaviours in a lattice-gas model of
swarming. In Jarkko Kari, Martin Kutrib, and Andreas Malcher,
editors, Proceedings of Automata’13, volume 8155 of Lecture Notes
in Computer Science, pages 84–97. Springer, 2013.

[BI84] Buvel, R.L. and Ingerson, Thomas E. Structure in asynchronous
cellular automata. Physica D, 1:59–68, 1984.

[BWBB16] Witold Bo lt, Barbara Wolnik, Jan M. Baetens, and Bernard De
Baets. On the identification of α-asynchronous cellular automata
in the case of partial observations with spatially separated gaps. In
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