32,420 research outputs found

    The Topology ToolKit

    Full text link
    This system paper presents the Topology ToolKit (TTK), a software platform designed for topological data analysis in scientific visualization. TTK provides a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependence-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website

    Multi-layer Architecture For Storing Visual Data Based on WCF and Microsoft SQL Server Database

    Full text link
    In this paper we present a novel architecture for storing visual data. Effective storing, browsing and searching collections of images is one of the most important challenges of computer science. The design of architecture for storing such data requires a set of tools and frameworks such as SQL database management systems and service-oriented frameworks. The proposed solution is based on a multi-layer architecture, which allows to replace any component without recompilation of other components. The approach contains five components, i.e. Model, Base Engine, Concrete Engine, CBIR service and Presentation. They were based on two well-known design patterns: Dependency Injection and Inverse of Control. For experimental purposes we implemented the SURF local interest point detector as a feature extractor and KK-means clustering as indexer. The presented architecture is intended for content-based retrieval systems simulation purposes as well as for real-world CBIR tasks.Comment: Accepted for the 14th International Conference on Artificial Intelligence and Soft Computing, ICAISC, June 14-18, 2015, Zakopane, Polan

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    GATE -- an Environment to Support Research and Development in Natural Language Engineering

    Get PDF
    We describe a software environment to support research and development in natural language (NL) engineering. This environment -- GATE (General Architecture for Text Engineering) -- aims to advance research in the area of machine processing of natural languages by providing a software infrastructure on top of which heterogeneous NL component modules may be evaluated and refined individually or may be combined into larger application systems. Thus, GATE aims to support both researchers and developers working on component technologies (e.g. parsing, tagging, morphological analysis) and those working on developing end-user applications (e.g. information extraction, text summarisation, document generation, machine translation, and second language learning). GATE will promote reuse of component technology, permit specialisation and collaboration in large-scale projects, and allow for the comparison and evaluation of alternative technologies. The first release of GATE is now available
    corecore