81 research outputs found

    One-shot Learning for iEEG Seizure Detection Using End-to-end Binary Operations: Local Binary Patterns with Hyperdimensional Computing

    Full text link
    This paper presents an efficient binarized algorithm for both learning and classification of human epileptic seizures from intracranial electroencephalography (iEEG). The algorithm combines local binary patterns with brain-inspired hyperdimensional computing to enable end-to-end learning and inference with binary operations. The algorithm first transforms iEEG time series from each electrode into local binary pattern codes. Then atomic high-dimensional binary vectors are used to construct composite representations of seizures across all electrodes. For the majority of our patients (10 out of 16), the algorithm quickly learns from one or two seizures (i.e., one-/few-shot learning) and perfectly generalizes on 27 further seizures. For other patients, the algorithm requires three to six seizures for learning. Overall, our algorithm surpasses the state-of-the-art methods for detecting 65 novel seizures with higher specificity and sensitivity, and lower memory footprint.Comment: Published as a conference paper at the IEEE BioCAS 201

    An EMG Gesture Recognition System with Flexible High-Density Sensors and Brain-Inspired High-Dimensional Classifier

    Full text link
    EMG-based gesture recognition shows promise for human-machine interaction. Systems are often afflicted by signal and electrode variability which degrades performance over time. We present an end-to-end system combating this variability using a large-area, high-density sensor array and a robust classification algorithm. EMG electrodes are fabricated on a flexible substrate and interfaced to a custom wireless device for 64-channel signal acquisition and streaming. We use brain-inspired high-dimensional (HD) computing for processing EMG features in one-shot learning. The HD algorithm is tolerant to noise and electrode misplacement and can quickly learn from few gestures without gradient descent or back-propagation. We achieve an average classification accuracy of 96.64% for five gestures, with only 7% degradation when training and testing across different days. Our system maintains this accuracy when trained with only three trials of gestures; it also demonstrates comparable accuracy with the state-of-the-art when trained with one trial

    Training a HyperDimensional Computing Classifier using a Threshold on its Confidence

    Full text link
    Hyperdimensional computing (HDC) has become popular for light-weight and energy-efficient machine learning, suitable for wearable Internet-of-Things (IoT) devices and near-sensor or on-device processing. HDC is computationally less complex than traditional deep learning algorithms and achieves moderate to good classification performance. This article proposes to extend the training procedure in HDC by taking into account not only wrongly classified samples, but also samples that are correctly classified by the HDC model but with low confidence. As such, a confidence threshold is introduced that can be tuned for each dataset to achieve the best classification accuracy. The proposed training procedure is tested on UCIHAR, CTG, ISOLET and HAND dataset for which the performance consistently improves compared to the baseline across a range of confidence threshold values. The extended training procedure also results in a shift towards higher confidence values of the correctly classified samples making the classifier not only more accurate but also more confident about its predictions

    Robust and Scalable Hyperdimensional Computing With Brain-Like Neural Adaptations

    Full text link
    The Internet of Things (IoT) has facilitated many applications utilizing edge-based machine learning (ML) methods to analyze locally collected data. Unfortunately, popular ML algorithms often require intensive computations beyond the capabilities of today's IoT devices. Brain-inspired hyperdimensional computing (HDC) has been introduced to address this issue. However, existing HDCs use static encoders, requiring extremely high dimensionality and hundreds of training iterations to achieve reasonable accuracy. This results in a huge efficiency loss, severely impeding the application of HDCs in IoT systems. We observed that a main cause is that the encoding module of existing HDCs lacks the capability to utilize and adapt to information learned during training. In contrast, neurons in human brains dynamically regenerate all the time and provide more useful functionalities when learning new information. While the goal of HDC is to exploit the high-dimensionality of randomly generated base hypervectors to represent the information as a pattern of neural activity, it remains challenging for existing HDCs to support a similar behavior as brain neural regeneration. In this work, we present dynamic HDC learning frameworks that identify and regenerate undesired dimensions to provide adequate accuracy with significantly lowered dimensionalities, thereby accelerating both the training and inference.Comment: arXiv admin note: substantial text overlap with arXiv:2304.0550

    Laelaps: An Energy-Efficient Seizure Detection Algorithm from Long-term Human iEEG Recordings without False Alarms

    Get PDF
    We propose Laelaps, an energy-efficient and fast learning algorithm with no false alarms for epileptic seizure detection from long-term intracranial electroencephalography (iEEG) signals. Laelaps uses end-to-end binary operations by exploiting symbolic dynamics and brain-inspired hyperdimensional computing. Laelaps's results surpass those yielded by state-of-the-art (SoA) methods [1], [2], [3], including deep learning, on a new very large dataset containing 116 seizures of 18 drug-resistant epilepsy patients in 2656 hours of recordings - each patient implanted with 24 to 128 iEEG electrodes. Laelaps trains 18 patient-specific models by using only 24 seizures: 12 models are trained with one seizure per patient, the others with two seizures. The trained models detect 79 out of 92 unseen seizures without any false alarms across all the patients as a big step forward in practical seizure detection. Importantly, a simple implementation of Laelaps on the Nvidia Tegra X2 embedded device achieves 1.7 7-3.9 7 faster execution and 1.4 7-2.9 7 lower energy consumption compared to the best result from the SoA methods. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch

    QubitHD: A Stochastic Acceleration Method for HD Computing-Based Machine Learning

    Full text link
    Machine Learning algorithms based on Brain-inspired Hyperdimensional (HD) computing imitate cognition by exploiting statistical properties of high-dimensional vector spaces. It is a promising solution for achieving high energy-efficiency in different machine learning tasks, such as classification, semi-supervised learning and clustering. A weakness of existing HD computing-based ML algorithms is the fact that they have to be binarized for achieving very high energy-efficiency. At the same time, binarized models reach lower classification accuracies. To solve the problem of the trade-off between energy-efficiency and classification accuracy, we propose the QubitHD algorithm. It stochastically binarizes HD-based algorithms, while maintaining comparable classification accuracies to their non-binarized counterparts. The FPGA implementation of QubitHD provides a 65% improvement in terms of energy-efficiency, and a 95% improvement in terms of the training time, as compared to state-of-the-art HD-based ML algorithms. It also outperforms state-of-the-art low-cost classifiers (like Binarized Neural Networks) in terms of speed and energy-efficiency by an order of magnitude during training and inference.Comment: 8 pages, 7 figures, 3 table

    Hyperdimensional Computing-based Multimodality Emotion Recognition with Physiological Signals

    Get PDF
    To interact naturally and achieve mutual sympathy between humans and machines, emotion recognition is one of the most important function to realize advanced human-computer interaction devices. Due to the high correlation between emotion and involuntary physiological changes, physiological signals are a prime candidate for emotion analysis. However, due to the need of a huge amount of training data for a high-quality machine learning model, computational complexity becomes a major bottleneck. To overcome this issue, brain-inspired hyperdimensional (HD) computing, an energy-efficient and fast learning computational paradigm, has a high potential to achieve a balance between accuracy and the amount of necessary training data. We propose an HD Computing-based Multimodality Emotion Recognition (HDC-MER). HDCMER maps real-valued features to binary HD vectors using a random nonlinear function, and further encodes them over time, and fuses across different modalities including GSR, ECG, and EEG. The experimental results show that, compared to the best method using the full training data, HDC-MER achieves higher classification accuracy for both valence (83.2% vs. 80.1%) and arousal (70.1% vs. 68.4%) using only 1/4 training data. HDC-MER also achieves at least 5% higher averaged accuracy compared to all the other methods in any point along the learning curve

    The Hyperdimensional Transform for Distributional Modelling, Regression and Classification

    Full text link
    Hyperdimensional computing (HDC) is an increasingly popular computing paradigm with immense potential for future intelligent applications. Although the main ideas already took form in the 1990s, HDC recently gained significant attention, especially in the field of machine learning and data science. Next to efficiency, interoperability and explainability, HDC offers attractive properties for generalization as it can be seen as an attempt to combine connectionist ideas from neural networks with symbolic aspects. In recent work, we introduced the hyperdimensional transform, revealing deep theoretical foundations for representing functions and distributions as high-dimensional holographic vectors. Here, we present the power of the hyperdimensional transform to a broad data science audience. We use the hyperdimensional transform as a theoretical basis and provide insight into state-of-the-art HDC approaches for machine learning. We show how existing algorithms can be modified and how this transform can lead to a novel, well-founded toolbox. Next to the standard regression and classification tasks of machine learning, our discussion includes various aspects of statistical modelling, such as representation, learning and deconvolving distributions, sampling, Bayesian inference, and uncertainty estimation
    • …
    corecore