3,901 research outputs found

    Support Vector Machines in R

    Get PDF
    Being among the most popular and efficient classification and regression methods currently available, implementations of support vector machines exist in almost every popular programming language. Currently four R packages contain SVM related software. The purpose of this paper is to present and compare these implementations.

    GSplit LBI: Taming the Procedural Bias in Neuroimaging for Disease Prediction

    Full text link
    In voxel-based neuroimage analysis, lesion features have been the main focus in disease prediction due to their interpretability with respect to the related diseases. However, we observe that there exists another type of features introduced during the preprocessing steps and we call them "\textbf{Procedural Bias}". Besides, such bias can be leveraged to improve classification accuracy. Nevertheless, most existing models suffer from either under-fit without considering procedural bias or poor interpretability without differentiating such bias from lesion ones. In this paper, a novel dual-task algorithm namely \emph{GSplit LBI} is proposed to resolve this problem. By introducing an augmented variable enforced to be structural sparsity with a variable splitting term, the estimators for prediction and selecting lesion features can be optimized separately and mutually monitored by each other following an iterative scheme. Empirical experiments have been evaluated on the Alzheimer's Disease Neuroimaging Initiative\thinspace(ADNI) database. The advantage of proposed model is verified by improved stability of selected lesion features and better classification results.Comment: Conditional Accepted by Miccai,201

    Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction.

    Get PDF
    Tumor heterogeneity is a limiting factor in cancer treatment and in the discovery of biomarkers to personalize it. We describe a computational purification tool, ISOpure, to directly address the effects of variable normal tissue contamination in clinical tumor specimens. ISOpure uses a set of tumor expression profiles and a panel of healthy tissue expression profiles to generate a purified cancer profile for each tumor sample and an estimate of the proportion of RNA originating from cancerous cells. Applying ISOpure before identifying gene signatures leads to significant improvements in the prediction of prognosis and other clinical variables in lung and prostate cancer
    corecore