9,316 research outputs found

    Finding co-solvers on Twitter, with a little help from Linked Data

    Get PDF
    In this paper we propose a method for suggesting potential collaborators for solving innovation challenges online, based on their competence, similarity of interests and social proximity with the user. We rely on Linked Data to derive a measure of semantic relatedness that we use to enrich both user profiles and innovation problems with additional relevant topics, thereby improving the performance of co-solver recommendation. We evaluate this approach against state of the art methods for query enrichment based on the distribution of topics in user profiles, and demonstrate its usefulness in recommending collaborators that are both complementary in competence and compatible with the user. Our experiments are grounded using data from the social networking service Twitter.com

    Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study

    Get PDF
    Recommender systems engage user profiles and appropriate filtering techniques to assist users in finding more relevant information over the large volume of information. User profiles play an important role in the success of recommendation process since they model and represent the actual user needs. However, a comprehensive literature review of recommender systems has demonstrated no concrete study on the role and impact of knowledge in user profiling and filtering approache. In this paper, we review the most prominent recommender systems in the literature and examine the impression of knowledge extracted from different sources. We then come up with this finding that semantic information from the user context has substantial impact on the performance of knowledge based recommender systems. Finally, some new clues for improvement the knowledge-based profiles have been proposed.Comment: 14 pages, 3 tables; International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 201

    BanditMF: Multi-Armed Bandit Based Matrix Factorization Recommender System

    Full text link
    Multi-armed bandits (MAB) provide a principled online learning approach to attain the balance between exploration and exploitation.Due to the superior performance and low feedback learning without the learning to act in multiple situations, Multi-armed Bandits drawing widespread attention in applications ranging such as recommender systems. Likewise, within the recommender system, collaborative filtering (CF) is arguably the earliest and most influential method in the recommender system. Crucially, new users and an ever-changing pool of recommended items are the challenges that recommender systems need to address. For collaborative filtering, the classical method is training the model offline, then perform the online testing, but this approach can no longer handle the dynamic changes in user preferences which is the so-called \textit{cold start}. So how to effectively recommend items to users in the absence of effective information? To address the aforementioned problems, a multi-armed bandit based collaborative filtering recommender system has been proposed, named BanditMF. BanditMF is designed to address two challenges in the multi-armed bandits algorithm and collaborative filtering: (1) how to solve the cold start problem for collaborative filtering under the condition of scarcity of valid information, (2) how to solve the sub-optimal problem of bandit algorithms in strong social relations domains caused by independently estimating unknown parameters associated with each user and ignoring correlations between users.Comment: MSc dissertatio
    corecore