1,079 research outputs found

    A New MAC Address Spoofing Detection Technique Based on Random Forests

    Get PDF
    Media access control (MAC) addresses in wireless networks can be trivially spoofed using off-the-shelf devices. The aim of this research is to detect MAC address spoofing in wireless networks using a hard-to-spoof measurement that is correlated to the location of the wireless device, namely the received signal strength (RSS). We developed a passive solution that does not require modification for standards or protocols. The solution was tested in a live test-bed (i.e., a wireless local area network with the aid of two air monitors acting as sensors) and achieved 99.77%, 93.16% and 88.38% accuracy when the attacker is 8–13 m, 4–8 m and less than 4 m away from the victim device, respectively. We implemented three previous methods on the same test-bed and found that our solution outperforms existing solutions. Our solution is based on an ensemble method known as random forests.https://doi.org/10.3390/s1603028

    CALLOC: Curriculum Adversarial Learning for Secure and Robust Indoor Localization

    Full text link
    Indoor localization has become increasingly vital for many applications from tracking assets to delivering personalized services. Yet, achieving pinpoint accuracy remains a challenge due to variations across indoor environments and devices used to assist with localization. Another emerging challenge is adversarial attacks on indoor localization systems that not only threaten service integrity but also reduce localization accuracy. To combat these challenges, we introduce CALLOC, a novel framework designed to resist adversarial attacks and variations across indoor environments and devices that reduce system accuracy and reliability. CALLOC employs a novel adaptive curriculum learning approach with a domain specific lightweight scaled-dot product attention neural network, tailored for adversarial and variation resilience in practical use cases with resource constrained mobile devices. Experimental evaluations demonstrate that CALLOC can achieve improvements of up to 6.03x in mean error and 4.6x in worst-case error against state-of-the-art indoor localization frameworks, across diverse building floorplans, mobile devices, and adversarial attacks scenarios

    Securearray: Improving WiFi security with fine-grained physical-layer information

    Get PDF
    Despite the important role that WiFi networks play in home and enterprise networks they are relatively weak from a security standpoint. With easily available directional antennas, attackers can be physically located off-site, yet compromise WiFi security protocols such as WEP, WPA, and even to some extent WPA2 through a range of exploits specific to those protocols, or simply by running dictionary and human-factors attacks on users' poorly-chosen passwords. This presents a security risk to the entire home or enterprise network. To mitigate this ongoing problem, we propose SecureArray, a system designed to operate alongside existing wireless security protocols, adding defense in depth against active attacks. SecureArray's novel signal processing techniques leverage multi-antenna access point (AP) to profile the directions at which a client's signals arrive, using this angle-of-arrival (AoA) information to construct highly sensitive signatures that with very high probability uniquely identify each client. Upon overhearing a suspicious transmission, the client and AP initiate an AoA signature-based challenge-response protocol to confirm and mitigate the threat. We also discuss how SecureArray can mitigate direct denial-of-service attacks on the latest 802.11 wireless security protocol. We have implemented SecureArray with an eight-antenna WARP hardware radio acting as the AP. Our experimental results show that in a busy office environment, SecureArray is orders of magnitude more accurate than current techniques, mitigating 100% of WiFi spoofing attack attempts while at the same time triggering false alarms on just 0.6% of legitimate traffic. Detection rate remains high when the attacker is located only five centimeters away from the legitimate client, for AP with fewer numbers of antennas and when client is mobile

    Improving a wireless localization system via machine learning techniques and security protocols

    Get PDF
    The recent advancements made in Internet of Things (IoT) devices have brought forth new opportunities for technologies and systems to be integrated into our everyday life. In this work, we investigate how edge nodes can effectively utilize 802.11 wireless beacon frames being broadcast from pre-existing access points in a building to achieve room-level localization. We explain the needed hardware and software for this system and demonstrate a proof of concept with experimental data analysis. Improvements to localization accuracy are shown via machine learning by implementing the random forest algorithm. Using this algorithm, historical data can train the model and make more informed decisions while tracking other nodes in the future. We also include multiple security protocols that can be taken to reduce the threat of both physical and digital attacks on the system. These threats include access point spoofing, side channel analysis, and packet sniffing, all of which are often overlooked in IoT devices that are rushed to market. Our research demonstrates the comprehensive combination of affordability, accuracy, and security possible in an IoT beacon frame-based localization system that has not been fully explored by the localization research community

    AntiSense: Standard-compliant CSI obfuscation against unauthorized Wi-Fi sensing

    Get PDF
    Channel State Information (CSI)-based localization with 802.11 has been proven feasible in multiple scenarios and is becoming a serious threat to people's privacy in workplaces, at home, and maybe even outdoors. Countering unauthorized localization without hampering communications is a non-trivial task, although some very recent works suggest that it is feasible with marginal modification of the 802.11 transmission chain, but this requires modifying 802.11 devices. Furthermore, if the attacker controls two devices and not just a receiver, transmission side signal manipulation cannot help. This work explores the possibility of countering CSI based localization with an active device that, instead of jamming signals to avoid that a malicious receiver exploits CSI information to locate a person, superimpose on frames a copy of the same frame signal whose goal is not destroying reception as in jamming, but only obfuscate the location-relevant information carried by the CSI. A prototype implementation and early results look promising; they show the feasibility of location obfuscation with high efficiency and excellent preservation of communication performance, and indicate that the technique works both against passive attacks, where the attacker controls only a receiver, and active ones, where he/she controls both a transmitter and a receiver. These results pave the road for further research on smart spaces that preserve users’ privacy with a technical solution and not only via legal prescriptions

    Detecting Impersonation Attacks in a Static WSN

    Get PDF
    The current state of security found in the IoT domain is highly flawed, a major problem being that the cryptographic keys used for authentication can be easily extracted and thus enable a myriad of impersonation attacks. In this MSc thesis a study is done of an authentication mechanism called device fingerprinting. It is a mechanism which can derive the identity of a device without relying on device identity credentials and thus detect credential-based impersonation attacks. A proof of concept has been produced to showcase how a fingerprinting system can be designed to function in a resource constrained IoT environment. A novel approach has been taken where several fingerprinting techniques have been combined through machine learning to improve the system’s ability to deduce the identity of a device. The proof of concept yields high performant results, indicating that fingerprinting techniques are a viable approach to achieve security in an IoT system

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks
    corecore