799 research outputs found

    Mixed Power Control Strategies for Cognitive Radio Networks under SINR and Interference Temperature Constraints

    Get PDF
    Without consideration of the minimum signal-to-interference-plus-noise ratio (SINR) and frequent information exchange, traditional power control algorithms can not always satisfy SINR requirements of secondary users (SUs) and primary users (PUs) in cognitive radio networks. In this paper, a distributed power control problem for maximizing total throughput of SUs is studied subject to the SINR constraints of SUs and the interference constraints of PUs. To reduce message exchange among SUs, two improved methods are obtained by dual decomposition approaches. For a large-scale network, an average interference constraint is presented at the cost of performance degradation. For a small-scale network, a weighted interference constraint with fairness consideration is proposed to obtain good performance. Simulation results demonstrate that the proposed algorithm is superior to ADCPC and TPCG algorithms

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    Spectrum Sharing in Wireless Networks via QoS-Aware Secondary Multicast Beamforming

    Get PDF
    Secondary spectrum usage has the potential to considerably increase spectrum utilization. In this paper, quality-of-service (QoS)-aware spectrum underlay of a secondary multicast network is considered. A multiantenna secondary access point (AP) is used for multicast (common information) transmission to a number of secondary single-antenna receivers. The idea is that beamforming can be used to steer power towards the secondary receivers while limiting sidelobes that cause interference to primary receivers. Various optimal formulations of beamforming are proposed, motivated by different ldquocohabitationrdquo scenarios, including robust designs that are applicable with inaccurate or limited channel state information at the secondary AP. These formulations are NP-hard computational problems; yet it is shown how convex approximation-based multicast beamforming tools (originally developed without regard to primary interference constraints) can be adapted to work in a spectrum underlay context. Extensive simulation results demonstrate the effectiveness of the proposed approaches and provide insights on the tradeoffs between different design criteria
    • …
    corecore