443 research outputs found

    Decentralized Riemannian Conjugate Gradient Method on the Stiefel Manifold

    Full text link
    The conjugate gradient method is a crucial first-order optimization method that generally converges faster than the steepest descent method, and its computational cost is much lower than the second-order methods. However, while various types of conjugate gradient methods have been studied in Euclidean spaces and on Riemannian manifolds, there has little study for those in distributed scenarios. This paper proposes a decentralized Riemannian conjugate gradient descent (DRCGD) method that aims at minimizing a global function over the Stiefel manifold. The optimization problem is distributed among a network of agents, where each agent is associated with a local function, and communication between agents occurs over an undirected connected graph. Since the Stiefel manifold is a non-convex set, a global function is represented as a finite sum of possibly non-convex (but smooth) local functions. The proposed method is free from expensive Riemannian geometric operations such as retractions, exponential maps, and vector transports, thereby reducing the computational complexity required by each agent. To the best of our knowledge, DRCGD is the first decentralized Riemannian conjugate gradient algorithm to achieve global convergence over the Stiefel manifold

    A new, globally convergent Riemannian conjugate gradient method

    Get PDF
    This article deals with the conjugate gradient method on a Riemannian manifold with interest in global convergence analysis. The existing conjugate gradient algorithms on a manifold endowed with a vector transport need the assumption that the vector transport does not increase the norm of tangent vectors, in order to confirm that generated sequences have a global convergence property. In this article, the notion of a scaled vector transport is introduced to improve the algorithm so that the generated sequences may have a global convergence property under a relaxed assumption. In the proposed algorithm, the transported vector is rescaled in case its norm has increased during the transport. The global convergence is theoretically proved and numerically observed with examples. In fact, numerical experiments show that there exist minimization problems for which the existing algorithm generates divergent sequences, but the proposed algorithm generates convergent sequences.Comment: 22 pages, 8 figure

    Blind Source Separation with Compressively Sensed Linear Mixtures

    Full text link
    This work studies the problem of simultaneously separating and reconstructing signals from compressively sensed linear mixtures. We assume that all source signals share a common sparse representation basis. The approach combines classical Compressive Sensing (CS) theory with a linear mixing model. It allows the mixtures to be sampled independently of each other. If samples are acquired in the time domain, this means that the sensors need not be synchronized. Since Blind Source Separation (BSS) from a linear mixture is only possible up to permutation and scaling, factoring out these ambiguities leads to a minimization problem on the so-called oblique manifold. We develop a geometric conjugate subgradient method that scales to large systems for solving the problem. Numerical results demonstrate the promising performance of the proposed algorithm compared to several state of the art methods.Comment: 9 pages, 2 figure
    corecore