29,589 research outputs found

    An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams

    Full text link
    Existing FNNs are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be automatically extracted from data streams or removed if they play limited role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely gClass, drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of dimensionality of input space due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using seven datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four popular continual learning algorithms and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy. Moreover, it is also shown that the concept drift detection method is an effective tool to control the depth of network structure while the hidden layer merging scenario is capable of simplifying the network complexity of a deep network with negligible compromise of generalization performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System

    Inverse Optimal Planning for Air Traffic Control

    Full text link
    We envision a system that concisely describes the rules of air traffic control, assists human operators and supports dense autonomous air traffic around commercial airports. We develop a method to learn the rules of air traffic control from real data as a cost function via maximum entropy inverse reinforcement learning. This cost function is used as a penalty for a search-based motion planning method that discretizes both the control and the state space. We illustrate the methodology by showing that our approach can learn to imitate the airport arrival routes and separation rules of dense commercial air traffic. The resulting trajectories are shown to be safe, feasible, and efficient

    A Minimal Incentive-based Demand Response Program With Self Reported Baseline Mechanism

    Full text link
    In this paper, we propose a novel incentive based Demand Response (DR) program with a self reported baseline mechanism. The System Operator (SO) managing the DR program recruits consumers or aggregators of DR resources. The recruited consumers are required to only report their baseline, which is the minimal information necessary for any DR program. During a DR event, a set of consumers, from this pool of recruited consumers, are randomly selected. The consumers are selected such that the required load reduction is delivered. The selected consumers, who reduce their load, are rewarded for their services and other recruited consumers, who deviate from their reported baseline, are penalized. The randomization in selection and penalty ensure that the baseline inflation is controlled. We also justify that the selection probability can be simultaneously used to control SO's cost. This allows the SO to design the mechanism such that its cost is almost optimal when there are no recruitment costs or at least significantly reduced otherwise. Finally, we also show that the proposed method of self-reported baseline outperforms other baseline estimation methods commonly used in practice

    Feature Reinforcement Learning: Part I: Unstructured MDPs

    Get PDF
    General-purpose, intelligent, learning agents cycle through sequences of observations, actions, and rewards that are complex, uncertain, unknown, and non-Markovian. On the other hand, reinforcement learning is well-developed for small finite state Markov decision processes (MDPs). Up to now, extracting the right state representations out of bare observations, that is, reducing the general agent setup to the MDP framework, is an art that involves significant effort by designers. The primary goal of this work is to automate the reduction process and thereby significantly expand the scope of many existing reinforcement learning algorithms and the agents that employ them. Before we can think of mechanizing this search for suitable MDPs, we need a formal objective criterion. The main contribution of this article is to develop such a criterion. I also integrate the various parts into one learning algorithm. Extensions to more realistic dynamic Bayesian networks are developed in Part II. The role of POMDPs is also considered there.Comment: 24 LaTeX pages, 5 diagram
    • …
    corecore