8,525 research outputs found

    River discharge simulation using variable parameter McCarthy–Muskingum and wavelet-support vector machine methods

    Get PDF
    In this study, an extended version of variable parameter McCarthy–Muskingum (VPMM) method originally proposed by Perumal and Price (J Hydrol 502:89–102, 2013) was compared with the widely used data-based model, namely support vector machine (SVM) and hybrid wavelet-support vector machine (WASVM) to simulate the hourly discharge in Neckar River wherein significant lateral flow contribution by intermediate catchment rainfall prevails during flood wave movement. The discharge data from the year 1999 to 2002 have been used in this study. The extended VPMM method has been used to simulate 9 flood events of the year 2002, and later the results were compared with SVM and WASVM models. The analysis of statistical and graphical results suggests that the extended VPMM method was able to predict the flood wave movement better than the SVM and WASVM models. A model complexity analysis was also conducted which suggests that the two parameter-based extended VPMM method has less complexity than the three parameter-based SVM and WASVM model. Further, the model selection criteria also give the highest values for VPMM in 7 out of 9 flood events. The simulation of flood events suggested that both the approaches were able to capture the underlying physics and reproduced the target value close to the observed hydrograph. However, the VPMM models are slightly more efficient and accurate, than the SVM and WASVM model which are based only on the antecedent discharge data. The study captures the current trend in the flood forecasting studies and showed the importance of both the approaches (physical and data-based modeling). The analysis of the study suggested that these approaches complement each other and can be used in accurate yet less computational intensive flood forecasting

    Humidity forecasting in a potato plantation using time-series neural models

    Get PDF
    It is widely acknowledged that, under the frame of sustainable farming, using the minimum water resources is a relevant requirement. In order to do that, precision irrigation aims at identifying the irrigation needs of plantations and irrigate accordingly. Artificial intelligence is a promising solution in this field as intelligent models are able to learn the soil moisture dynamics in the soil-plant-atmosphere system and then generating appropriate irrigation scheduling. This is a complex task as the phenology of plants and its water demand vary with soil properties and weather conditions. The present research contributes to this challenging task by proposing the application of neural networks in order to learn the time-series evolution of irrigation needs associated to a potato plantation. Several of such models are thoroughly compared, together with different interpolation methods, in order to find the best combination for accurately forecasting water needs. In order to predict the soil water content in a potato field crop, in which soil humidity probes were installed at 15, 30, and 45 cm depth during the whole cycle of a potato crop. This innovative study and its promising results provide with significant contributions to address the problem of predicting and managing groundwater for agricultural use in a sustainable way.Lab-Ferrer (METER Group) and the UBUCOMP research group at the University of Burgos

    Multisensor Fusion Remote Sensing Technology For Assessing Multitemporal Responses In Ecohydrological Systems

    Get PDF
    Earth ecosystems and environment have been changing rapidly due to the advanced technologies and developments of humans. Impacts caused by human activities and developments are difficult to acquire for evaluations due to the rapid changes. Remote sensing (RS) technology has been implemented for environmental managements. A new and promising trend in remote sensing for environment is widely used to measure and monitor the earth environment and its changes. RS allows large-scaled measurements over a large region within a very short period of time. Continuous and repeatable measurements are the very indispensable features of RS. Soil moisture is a critical element in the hydrological cycle especially in a semiarid or arid region. Point measurement to comprehend the soil moisture distribution contiguously in a vast watershed is difficult because the soil moisture patterns might greatly vary temporally and spatially. Space-borne radar imaging satellites have been popular because they have the capability to exhibit all weather observations. Yet the estimation methods of soil moisture based on the active or passive satellite imageries remain uncertain. This study aims at presenting a systematic soil moisture estimation method for the Choke Canyon Reservoir Watershed (CCRW), a semiarid watershed with an area of over 14,200 km2 in south Texas. With the aid of five corner reflectors, the RADARSAT-1 Synthetic Aperture Radar (SAR) imageries of the study area acquired in April and September 2004 were processed by both radiometric and geometric calibrations at first. New soil moisture estimation models derived by genetic programming (GP) technique were then developed and applied to support the soil moisture distribution analysis. The GP-based nonlinear function derived in the evolutionary process uniquely links a series of crucial topographic and geographic features. Included in this process are slope, aspect, vegetation cover, and soil permeability to compliment the well-calibrated SAR data. Research indicates that the novel application of GP proved useful for generating a highly nonlinear structure in regression regime, which exhibits very strong correlations statistically between the model estimates and the ground truth measurements (volumetric water content) on the basis of the unseen data sets. In an effort to produce the soil moisture distributions over seasons, it eventually leads to characterizing local- to regional-scale soil moisture variability and performing the possible estimation of water storages of the terrestrial hydrosphere. A new evolutionary computational, supervised classification scheme (Riparian Classification Algorithm, RICAL) was developed and used to identify the change of riparian zones in a semi-arid watershed temporally and spatially. The case study uniquely demonstrates an effort to incorporating both vegetation index and soil moisture estimates based on Landsat 5 TM and RADARSAT-1 imageries while trying to improve the riparian classification in the Choke Canyon Reservoir Watershed (CCRW), South Texas. The CCRW was selected as the study area contributing to the reservoir, which is mostly agricultural and range land in a semi-arid coastal environment. This makes the change detection of riparian buffers significant due to their interception capability of non-point source impacts within the riparian buffer zones and the maintenance of ecosystem integrity region wide. The estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future. Soil properties, landscapes, channels, fault lines, erosion/deposition patches, and bedload transport history show geologic and geomorphologic features in a variety of watersheds. In response to these unique watershed characteristics, the hydrology of large-scale watersheds is often very complex. Precipitation, infiltration and percolation, stream flow, plant transpiration, soil moisture changes, and groundwater recharge are intimately related with each other to form water balance dynamics on the surface of these watersheds. Within this chapter, depicted is an optimal site selection technology using a grey integer programming (GIP) model to assimilate remote sensing-based geo-environmental patterns in an uncertain environment with respect to some technical and resources constraints. It enables us to retrieve the hydrological trends and pinpoint the most critical locations for the deployment of monitoring stations in a vast watershed. Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensing-based GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity. Effective water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods also have caused so many damages and lives. To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to seek advanced techniques for improving streamflow forecasting. The objective of this section of research is to incorporate sea surface temperature (SST), Next Generation Radar (NEXRAD) and meteorological characteristics with historical stream data to forecast the actual streamflow using genetic programming. This study case concerns the forecasting of stream discharge of a complex-terrain, semi-arid watershed. This study elicits microclimatological factors and the resultant stream flow rate in river system given the influence of dynamic basin features such as soil moisture, soil temperature, ambient relative humidity, air temperature, sea surface temperature, and precipitation. Evaluations of the forecasting results are expressed in terms of the percentage error (PE), the root-mean-square error (RMSE), and the square of the Pearson product moment correlation coefficient (r-squared value). The developed models can predict streamflow with very good accuracy with an r-square of 0.84 and PE of 1% for a 30-day prediction

    Modelling Pore Water Pressure Using Sigmoid Kernel Function

    Get PDF
    Pore-Water Pressure (PWP) is an influential parameter for monitoring slope stability responses to rainfall especially in the area that prone to experience slope failure. Monitoring PWP that is in the form of nonlinear complex data however is expensive and require quite tedious task through traditional approach for evaluation purposes. In respond to that, recently, PWP able to be modelled by soft computing techniques - Support Vector Machine (SVM). SVM will determine the optimal linear separating plane in high dimension feature space of nonlinear complex data by its numerous kernel function technique. The data on rainfall is collected at slope site of Universiti Teknologi PETRONAS, Perak

    Improving soil stability with alum sludge : an ai-enabled approach for accurate prediction of california bearing ratio

    Get PDF
    Alum sludge is a byproduct of water treatment plants, and its use as a soil stabilizer has gained increasing attention due to its economic and environmental benefits. Its application has been shown to improve the strength and stability of soil, making it suitable for various engineering applications. However, to go beyond just measuring the effects of alum sludge as a soil stabilizer, this study investigates the potential of artificial intelligence (AI) methods for predicting the California bearing ratio (CBR) of soils stabilized with alum sludge. Three AI methods, including two black box methods (artificial neural network and support vector machines) and one grey box method (genetic programming), were used to predict CBR, based on a database with nine input parameters. The results demonstrate the effectiveness of AI methods in predicting CBR with good accuracy (R2 values ranging from 0.94 to 0.99 and MAE values ranging from 0.30 to 0.51). Moreover, a novel approach, using genetic programming, produced an equation that accurately estimated CBR, incorporating seven inputs. The analysis of parameter sensitivity and importance, revealed that the number of hammer blows for compaction was the most important parameter, while the parameters for maximum dry density of soil and mixture were the least important. This study highlights the potential of AI methods as a useful tool for predicting the performance of alum sludge as a soil stabilizer. © 2023 by the authors

    Forecasting green roofs’ potential in improving building thermal performance and mitigating urban heat island in the Mediterranean area: An artificial intelligence-based approach

    Get PDF
    Green roofs are widely used in hot or cold climates mainly because they are capable to improve the energy efficiency of buildings and, when implemented at a large scale, reducing air pollution and the urban heat island effect (UHI) in urban contexts. Artificial Neural Network (ANN) black-box algorithms are a valid alternative to studying complex systems. However, the literature highlights - quite surprisingly – none of the available research refers to coupling ANNs and green roofs in the Mediterranean area, where green roofs are instead considered one of the most suitable technologies to reduce the high cooling demand. Therefore, the objective of this research work is to create and validate an ANN for the prediction of the monthly green roof’s internal and external surface temperatures and the monthly internal air temperature, starting from different green roof parameters and climatic variables. Specifically, the ANN was created with reference to a Mediterranean climate considering an existing green roof on a building of the University of Palermo characterized by a cooling demand predominance; 180 green roof configurations, obtained by varying the characteristic parameters of vegetation (plant height, leaf area index and leaf reflectivity) and the substrate thickness and thermophysical properties (lightweight and heavyweight), were dynamically simulated on an hourly basis to build the training dataset. In addition, other 72 green roof configurations were simulated to generate the dataset for the validation purpose of the ANN accuracy. The optimal ANN-related architecture consists of 90 neurons with one hidden layer and guarantees very high accuracy predictions. The outcomes of this research represent a useful tool to determine the thermal response of green roofs and their impact on the building energy demand and indoor thermal comfort and UHI mitigation

    Revolutionizing Global Food Security: Empowering Resilience through Integrated AI Foundation Models and Data-Driven Solutions

    Full text link
    Food security, a global concern, necessitates precise and diverse data-driven solutions to address its multifaceted challenges. This paper explores the integration of AI foundation models across various food security applications, leveraging distinct data types, to overcome the limitations of current deep and machine learning methods. Specifically, we investigate their utilization in crop type mapping, cropland mapping, field delineation and crop yield prediction. By capitalizing on multispectral imagery, meteorological data, soil properties, historical records, and high-resolution satellite imagery, AI foundation models offer a versatile approach. The study demonstrates that AI foundation models enhance food security initiatives by providing accurate predictions, improving resource allocation, and supporting informed decision-making. These models serve as a transformative force in addressing global food security limitations, marking a significant leap toward a sustainable and secure food future

    Optimización de la gestión de redes de riego a presión a diferentes escalas mediante Inteligencia Artificial

    Get PDF
    Factors such as climate change, world population growth or the competition for the water resources make freshwater availability become an increasingly large and complex global challenge. Under this scenario of reduced water availability, increasing droughts frequency and uncertainties associated with a changing climate, the irrigated agriculture sector, particularly in the Mediterranean region, will need to be even more efficient in the use of the water resources. In Spain, many irrigation districts have been modernized in recent years, replacing the obsolete open channels by pressurized water distribution networks towards improvements in water use efficiency. Thanks to this, water use has reduced but the energy demand and the water costs have dramatically increased. Thus, strategies to reduce simultaneously water and energy uses in irrigation districts are required. This thesis consists of nine chapters, which include several models to optimize the management of the irrigation districts and increase the efficiency of water and energy use.Factores tales como el cambio climático, el crecimiento de la población mundial o la competencia por los recursos hídricos hacen que la disponibilidad de agua se esté convirtiendo en un desafío global cada vez más grande y complejo. En este escenario de reducción de la disponibilidad de agua, aumento de la frecuencia de las sequías y de las incertidumbres asociadas a un cambio climático, el sector de la agricultura de regadío, en particular en la región mediterránea, tendrá que ser aún más eficiente en el uso de los recursos hídricos. En España, muchas comunidades de regantes se han modernizado en los últimos años, sustituyendo los obsoletos canales abiertos por redes de distribución de agua a presión con el objetivo de mejorar la eficiencia en el uso del agua. Gracias a esto, el uso del agua se ha reducido, pero la demanda de energía y los costos del agua se han incrementado drásticamente. Por lo tanto, se requieren estrategias para reducir simultáneamente el uso de agua y energía en las comunidades de regantes. Esta tesis consta de nueve capítulos que incluyen varios modelos para optimizar la gestión de las comunidades de regantes y aumentar la eficiencia en el uso del agua y la energía
    corecore