880 research outputs found

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods

    A Framework for Multimedia Data Hiding (Security)

    Get PDF
    With the proliferation of multimedia data such as images, audio, and video, robust digital watermarking and data hiding techniques are needed for copyright protection, copy control, annotation, and authentication. While many techniques have been proposed for digital color and grayscale images, not all of them can be directly applied to binary document images. The difficulty lies in the fact that changing pixel values in a binary document could introduce Irregularities that is very visually noticeable. We have seen but limited number of papers proposing new techniques and ideas for document image watermarking and data hiding. In this paper, we present an overview and summary of recent developments on this important topic, and discuss important issues such as robustness and data hiding capacity of the different techniques

    Separable Reversible Data Hiding in Encrypted Images Based on Two-Dimensional Histogram Modification

    Get PDF
    An efficient method of completely separable reversible data hiding in encrypted images is proposed. The cover image is first partitioned into nonoverlapping blocks and specific encryption is applied to obtain the encrypted image. Then, image difference in the encrypted domain can be calculated based on the homomorphic property of the cryptosystem. The data hider, who does not know the original image content, may reversibly embed secret data into image difference based on two-dimensional difference histogram modification. Data extraction is completely separable from image decryption; that is, data extraction can be done either in the encrypted domain or in the decrypted domain, so that it can be applied to different application scenarios. In addition, data extraction and image recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes

    A Data Hiding Method Based on Partition Variable Block Size with Exclusive-or Operation on Binary Image

    Get PDF
    In this paper, we propose a high capacity data hiding method applying in binary images. Since a binary image has only two colors, black or white, it is hard to hide data imperceptible. The capacities and imperception are always in a trade-off problem. Before embedding we shuffle the secret data by a pseudo-random number generator to keep more secure. We divide the host image into several non-overlapping (2n+1) by (2n+1) sub-blocks in an M by N host image as many as possible, where n can equal 1, 2, 3 , …, or min(M,N). Then we partition each sub-block into four overlapping (n+1) by (n+1) sub-blocks. We skip the all blacks or all whites in each (2n+1) by (2n+1) sub-blocks. We consider all four (n+1) by (n+1) sub-blocks to check the XOR between the non overlapping parts and center pixel of the (2n+1) by (2n+1) sub-block, it embed n 2 bits in each (n+1) by (n+1) sub-block, totally are 4*n 2 . The entire host image can be embedded 4×n 2×M/(2n+1)×N/(2n+1) bits. The extraction way is simply to test the XOR between center pixel with their non-overlapping part of each sub-block. All embedding bits are collected and shuffled back to the original order. The adaptive means the partitioning sub-block may affect the capacities and imperception that we want to select. The experimental results show that the method provides the large embedding capacity and keeps imperceptible and reveal the host image lossless

    ROI-based reversible watermarking scheme for ensuring the integrity and authenticity of DICOM MR images

    Get PDF
    Reversible and imperceptible watermarking is recognized as a robust approach to confirm the integrity and authenticity of medical images and to verify that alterations can be detected and tracked back. In this paper, a novel blind reversible watermarking approach is presented to detect intentional and unintentional changes within brain Magnetic Resonance (MR) images. The scheme segments images into two parts; the Region of Interest (ROI) and the Region of Non Interest (RONI). Watermark data is encoded into the ROI using reversible watermarking based on the Difference Expansion (DE) technique. Experimental results show that the proposed method, whilst fully reversible, can also realize a watermarked image with low degradation for reasonable and controllable embedding capacity. This is fulfilled by concealing the data into ‘smooth’ regions inside the ROI and through the elimination of the large location map required for extracting the watermark and retrieving the original image. Our scheme delivers highly imperceptible watermarked images, at 92.18-99.94dB Peak Signal to Noise Ratio (PSNR) evaluated through implementing a clinical trial based on relative Visual Grading Analysis (relative VGA). This trial defines the level of modification that can be applied to medical images without perceptual distortion. This compares favorably to outcomes reported under current state-of-art techniques. Integrity and authenticity of medical images are also ensured through detecting subsequent changes enacted on the watermarked images. This enhanced security measure, therefore, enables the detection of image manipulations, by an imperceptible approach, that may establish increased trust in the digital medical workflow

    Encryption and Decryption of Images with Pixel Data Modification Using Hand Gesture Passcodes

    Get PDF
    To ensure data security and safeguard sensitive information in society, image encryption and decryption as well as pixel data modifications, are essential. To avoid misuse and preserve trust in our digital environment, it is crucial to use these technologies responsibly and ethically. So, to overcome some of the issues, the authors designed a way to modify pixel data that would hold the hidden information. The objective of this work is to change the pixel values in a way that can be used to store information about black and white image pixel data. Prior to encryption and decryption, by using Python we were able to construct a passcode with hand gestures in the air, then encrypt it without any data loss. It concentrates on keeping track of simply two pixel values. Thus, pixel values are slightly changed to ensure the masked image is not misleading. Considering that the RGB values are at their border values of 254, 255 the test cases of masking overcome issues with the corner values susceptibility
    corecore