194,085 research outputs found

    Mining Threat Intelligence about Open-Source Projects and Libraries from Code Repository Issues and Bug Reports

    Full text link
    Open-Source Projects and Libraries are being used in software development while also bearing multiple security vulnerabilities. This use of third party ecosystem creates a new kind of attack surface for a product in development. An intelligent attacker can attack a product by exploiting one of the vulnerabilities present in linked projects and libraries. In this paper, we mine threat intelligence about open source projects and libraries from bugs and issues reported on public code repositories. We also track library and project dependencies for installed software on a client machine. We represent and store this threat intelligence, along with the software dependencies in a security knowledge graph. Security analysts and developers can then query and receive alerts from the knowledge graph if any threat intelligence is found about linked libraries and projects, utilized in their products

    Applications of Machine Learning to Threat Intelligence, Intrusion Detection and Malware

    Get PDF
    Artificial Intelligence (AI) and Machine Learning (ML) are emerging technologies with applications to many fields. This paper is a survey of use cases of ML for threat intelligence, intrusion detection, and malware analysis and detection. Threat intelligence, especially attack attribution, can benefit from the use of ML classification. False positives from rule-based intrusion detection systems can be reduced with the use of ML models. Malware analysis and classification can be made easier by developing ML frameworks to distill similarities between the malicious programs. Adversarial machine learning will also be discussed, because while ML can be used to solve problems or reduce analyst workload, it also introduces new attack surfaces

    Investigative Simulation: Towards Utilizing Graph Pattern Matching for Investigative Search

    Full text link
    This paper proposes the use of graph pattern matching for investigative graph search, which is the process of searching for and prioritizing persons of interest who may exhibit part or all of a pattern of suspicious behaviors or connections. While there are a variety of applications, our principal motivation is to aid law enforcement in the detection of homegrown violent extremists. We introduce investigative simulation, which consists of several necessary extensions to the existing dual simulation graph pattern matching scheme in order to make it appropriate for intelligence analysts and law enforcement officials. Specifically, we impose a categorical label structure on nodes consistent with the nature of indicators in investigations, as well as prune or complete search results to ensure sensibility and usefulness of partial matches to analysts. Lastly, we introduce a natural top-k ranking scheme that can help analysts prioritize investigative efforts. We demonstrate performance of investigative simulation on a real-world large dataset.Comment: 8 pages, 6 figures. Paper to appear in the Fosint-SI 2016 conference proceedings in conjunction with the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining ASONAM 201
    • …
    corecore