921 research outputs found

    A Correspondence between Maximal Abelian Sub-Algebras and Linear Logic Fragments

    Full text link
    We show a correspondence between a classification of maximal abelian sub-algebras (MASAs) proposed by Jacques Dixmier and fragments of linear logic. We expose for this purpose a modified construction of Girard's hyperfinite geometry of interaction which interprets proofs as operators in a von Neumann algebra. The expressivity of the logic soundly interpreted in this model is dependent on properties of a MASA which is a parameter of the interpretation. We also unveil the essential role played by MASAs in previous geometry of interaction constructions

    Unification and Logarithmic Space

    Full text link
    We present an algebraic characterization of the complexity classes Logspace and NLogspace, using an algebra with a composition law based on unification. This new bridge between unification and complexity classes is inspired from proof theory and more specifically linear logic and Geometry of Interaction. We show how unification can be used to build a model of computation by means of specific subalgebras associated to finite permutations groups. We then prove that whether an observation (the algebraic counterpart of a program) accepts a word can be decided within logarithmic space. We also show that the construction can naturally represent pointer machines, an intuitive way of understanding logarithmic space computing

    Γ\Gamma-Conformal Algebras

    Full text link
    Γ\Gamma-conformal algebra is an axiomatic description of the operator product expansion of chiral fields with simple poles at finitely many points. We classify these algebras and their representations in terms of Lie algebras and their representations with an action of the group Γ\Gamma. To every Γ\Gamma-conformal algebra and a character of Γ\Gamma we associate a Lie algebra generated by fields with the OPE with simple poles. Examples include twisted affine Kac-Moody algebras, the sin algebra (which is a ``Γ\Gamma-conformal'' analodue of the general linear algebra) and its analogues, the algebra of pseudodifferential operators on the circle, etc.Comment: 23 pages, AMSLatex Repotr-no: ITEP-TH-28/9

    Memoization for Unary Logic Programming: Characterizing PTIME

    Full text link
    We give a characterization of deterministic polynomial time computation based on an algebraic structure called the resolution semiring, whose elements can be understood as logic programs or sets of rewriting rules over first-order terms. More precisely, we study the restriction of this framework to terms (and logic programs, rewriting rules) using only unary symbols. We prove it is complete for polynomial time computation, using an encoding of pushdown automata. We then introduce an algebraic counterpart of the memoization technique in order to show its PTIME soundness. We finally relate our approach and complexity results to complexity of logic programming. As an application of our techniques, we show a PTIME-completeness result for a class of logic programming queries which use only unary function symbols.Comment: Soumis {\`a} LICS 201
    • …
    corecore