2 research outputs found

    A cluster computer performance predictor for memory scheduling

    Full text link
    Remote Memory Access (RMA) hardware allow a given motherboard in a cluster to directly access the memory installed in a remote motherboard of the same cluster. In recent works, this characteristic has been used to extend the addressable memory space of selected motherboards, which enable a better balance of main memory resources among cluster applications. This way is much more cost-effective than than implementing a full-fledged shared memory system. In this context, the memory scheduler is in charge of finding a suitable distribution of local and remote memory that maximizes the performance and guarantees a minimum QoS among the applications. Note that since changing the memory distribution is a slow process involving several motherboards, the memory scheduler needs to make sure that the target distribution provides better performance than the current one. In this paper, a performance predictor is designed in order to find the best memory distribution for a given set of applications executing in a cluster motherboard. The predictor uses simple hardware counters to estimate the expected impact on performance of the different memory distributions. The hardware counters provide the predictor with the information about the time spent in processor, memory access and network. The performance model used by the predictor has been validated in a detailed microarchitectural simulator using real benchmarks. Results show that the prediction accuracy never deviates more than 5% compared to the real results, being less than 0.5% in most of the cases.This work was supported by Spanish CICYT under Grant TIN2009-14475-C04-01, and by Consolider-Ingenio under Grant CSD2006-00046Serrano Gómez, M.; Sahuquillo Borrás, J.; Hassan Mohamed, H.; Petit Martí, SV.; Duato Marín, JF. (2011). A cluster computer performance predictor for memory scheduling. En Algorithms and Architectures for Parallel Processing. Springer Verlag (Germany). 7017:353-362. doi:10.1007/978-3-642-24669-2_34S3533627017Meuer, H.W.: The top500 project: Looking back over 15 years of supercomputing experience. Informatik-Spektrum 31, 203–222 (2008), doi:10.1007/s00287-008-0240-6Nussle, M., Scherer, M., Bruning, U.: A Resource Optimized Remote-Memory-Access Architecture for Low-latency Communication. In: International Conference on Parallel Processing, pp. 220–227 (September 2009)Blocksome, M., Archer, C., Inglett, T., McCarthy, P., Mundy, M., Ratterman, J., Sidelnik, A., Smith, B., Almási, G., Castaños, J., Lieber, D., Moreira, J., Krishnamoorthy, S., Tipparaju, V., Nieplocha, J.: Design and implementation of a one-sided communication interface for the IBM eServer Blue Gene®supercomputer. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, p. 120. ACM, New York (2006)Kumar, S., Dózsa, G., Almasi, G., Heidelberger, P., Chen, D., Giampapa, M., Blocksome, M., Faraj, A., Parker, J., Ratterman, J., Smith, B.E., Archer, C.: The deep computing messaging framework: generalized scalable message passing on the blue gene/P supercomputer. In: ICS, pp. 94–103 (2008)Tipparaju, V., Kot, A., Nieplocha, J., Bruggencate, M.T., Chrisochoides, N.: Evaluation of Remote Memory Access Communication on the Cray XT3. In: IEEE International Parallel and Distributed Processing Symposium, pp. 1–7 (March 2007)HyperTransport Technology Consortium. HyperTransport I/O Link Specification Revision (October 3, 2008)Serrano, M., Sahuquillo, J., Hassan, H., Petit, S., Duato, J.: A scheduling heuristic to handle local and remote memory in cluster computers. In: High Performance Computing and Communications (2010) (accepted for publication)Serrano, M., Sahuquillo, J., Petit, S., Hassan, H., Duato, J.: A cost-effective heuristic to schedule local and remote memory in cluster computers. The Journal of Supercomputing, 1–19 (2011), doi:10.1007/s11227-011-0566-8Ubal, R., Sahuquillo, J., Petit, S., López, P.: Multi2Sim: A Simulation Framework to Evaluate Multicore-Multithreaded Processors. In: Proceedings of the 19th International Symposium on Computer Architecture and High Performance Computing (2007)Keltcher, C.N., McGrath, K.J., Ahmed, A., Conway, P.: The AMD Opteron Processor for Multiprocessor Servers. IEEE Micro 23(2), 66–76 (2003)Duato, J., Silla, F., Yalamanchili, S.: Extending HyperTransport Protocol for Improved Scalability. In: First International Workshop on HyperTransport Research and Applications (2009)Litz, H., Fröening, H., Nuessle, M., Brüening, U.: A HyperTransport Network Interface Controller for Ultra-low Latency Message Transfers. In: HyperTransport Consortium White Paper (2007)Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention in multicore processors via scheduling. In: Proceedings of the 15th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 129–142 (2010)Xie, Y., Loh, G.H.: Dynamic Classification of Program Memory Behaviors in CMPs. In: 2nd Workshop on Chip Multiprocessor Memory Systems and Interconnects in conjunction with the 35th International Symposium on Computer Architecture (2008)Xu, C., Chen, X., Dick, R.P., Mao, Z.M.: Cache contention and application performance prediction for multi-core systems. In: IEEE International Symposium on Performance Analysis of Systems and Software, pp. 76–86 (2010)Rai, J.K., Negi, A., Wankar, R., Nayak, K.D.: Performance prediction on multi-core processors. In: 2010 International Conference on Computational Intelligence and Communication Networks (CICN), pp. 633–637 (November 2010)Liang, S., Noronha, R., Panda, D.K.: Swapping to Remote Memory over InfiniBand: An Approach using a High Performance Network Block Device. In: CLUSTER, pp. 1–10. IEEE, Los Alamitos (2005)Werstein, P., Jia, X., Huang, Z.: A Remote Memory Swapping System for Cluster Computers. In: Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 75–81 (2007)Midorikawa, H., Kurokawa, M., Himeno, R., Sato, M.: DLM: A distributed Large Memory System using remote memory swapping over cluster nodes. In: IEEE International Conference on Cluster Computing, pp. 268–273 (October 2008

    A cost-effective heuristic to schedule local and remote memory in cluster computers

    Full text link
    Cluster computers represent a cost-effective alternative solution to supercomputers. In these systems, it is common to constrain the memory address space of a given processor to the local motherboard. Constraining the system in this way is much cheaper than using a full-fledged shared memory implementation among motherboards. However, memory usage among motherboards can be unfairly balanced. On the other hand, remote memory access (RMA) hardware provides fast interconnects among the motherboards of a cluster. RMA devices can be used to access remote RAM memory from a local motherboard. This work focuses on this capability in order to achieve a better global use of the total RAM memory in the system. More precisely, the address space of local applications is extended to remote motherboards and is used to access remote RAM memory. This paper presents an ideal memory scheduling algorithm and proposes a cost-effective heuristic to allocate local and remote memory among local applications. Compared to the devised ideal algorithm, the heuristic obtains the same (or closely resembling) results while largely reducing the computational cost. In addition, we analyze the impact on the performance of stand alone applications varying the memory distribution among regions (local, local to board, and remote). Then, this study is extended to any number of concurrent applications. Experimental results show that a QoS parameter is needed in order to avoid unacceptable performance degradation. © 2011 Springer Science+Business Media, LLC.This work was supported by Spanish CICYT under Grant TIN2009-14475-C04-01 and by Consolider-Ingenio under Grant CSD2006-00046.Serrano Gómez, M.; Sahuquillo Borrás, J.; Petit Martí, SV.; Hassan Mohamed, H.; Duato Marín, JF. (2012). A cost-effective heuristic to schedule local and remote memory in cluster computers. Journal of Supercomputing. 59(3):1533-1551. https://doi.org/10.1007/s11227-011-0566-8S15331551593IBM journal of Research and Development staff (2008) Overview of the IBM blue gene/P project. IBM J Res Dev 52(1/2):199–220Blocksome M, Archer C, Inglett T, McCarthy P, Mundy M, Ratterman J, Sidelnik A, Smith B, Almási G, Castaños J, Lieber D, Moreira J, Krishnamoorthy S, Tipparaju V, Nieplocha J (2006) Design and implementation of a one-sided communication interface for the IBM eServer Blue Gene® supercomputer. In: Proceedings of the 2006 ACM/IEEE conference on supercomputing, SC ’06, Tampa, FL, USA, November 2006, pp 54–54Kumar S, Dózsa G, Almasi G, Heidelberger P, Chen D, Giampapa M, Blocksome M, Faraj A, Parker J, Ratterman J, Smith BE, Archer C (2008) The deep computing messaging framework: generalized scalable message passing on the blue gene/P supercomputer. In: Proceedings of the 22nd annual international conference on supercomputing, Island of Kos, Greece, June 2008, pp 94–103Tipparaju V, Kot A, Nieplocha J, Bruggencate MT, Chrisochoides N (2007) Evaluation of remote memory access communication on the cray XT3. In: Proceedings of the 21th international parallel and distributed processing symposium, Long Beach, California, USA, March 2007, pp 1–7Nussle M, Scherer M, Bruning U (2009) A resource optimized remote-memory-access architecture for low-latency communication. In: International conference on parallel processing, Sept 2009, pp 220–227http://www.hypertransport.org/Serrano M, Sahuquillo J, Hassan H, Petit S, Duato J (2010) A scheduling heuristic to handle local and remote memory in cluster computers. In: Proceedings of the 12th IEEE international conference on high performance computing, Melbourne, Australia, Sept 2010, pp 35–42Keltcher CN, McGrath KJ, Ahmed A, Conway P (2003) The AMD opteron processor for multiprocessor servers. IEEE MICRO 23(2):66–76Duato J, Silla F, Yalamanchili S (2009) Extending hypertransport protocol for improved scalability. In: First international workshop on hypertransport research and applications.Litz H, Fröening H, Nuessle M, Brüening U (2007) A hypertransport network interface controller for ultra-low latency message transfers. HyperTransport Consortium White Paperhttps://www.simics.net/http://www.cs.wisc.edu/gems/http://www.cs.virginia.edu/stream/Woo SC, Ohara M, Torrie E, Singh JP, Gupta A (1995) The SPLASH-2 programs: Characterization and methodological considerations. In: Proceedings of the 22nd annual international symposium on computer architecture, New York, NY, USA, 1995, pp 24–36Levitin A (2003) Introduction to the design and analysis of algorithms. Addison Wesley, ReadingOleszkiewicz J, Xiao L, Liu Y (2004) Parallel network RAM: Effectively utilizing global cluster memory for large data-intensive parallel programs. In: Proceedings of 33rd international conference on parallel processing, Montreal, Quebec, Canada, pp 353–360Liang S, Noronha R, Panda DK (2005) Swapping to remote memory over infiniband: An approach using a high performance network block device. In: Proceedings of the 2005 IEEE international conference on cluster computing, Boston, Massachusetts, USA, pp 1–10Oguchi M, Kitsuregawa M (2000) Using available remote memory dynamically for parallel data mining application on ATM-connected PC cluster. In: Proceedings of the 14th international parallel & distributed processing symposium, Cancun, Mexico, pp 411–420Werstein P, Jia X, Huang Z (2007) A remote memory swapping system for cluster computers. In: Proceedings of the eighth international conference on parallel and distributed computing, applications and technologies, Adelaide, Australia, pp 75–81Midorikawa H, Kurokawa M, Himeno R, Sato M (2008) DLM: A distributed large memory system using remote memory swapping over cluster nodes. In: Proceedings of the 2008 IEEE international conference on cluster computing, Tsukuba, Japan, October 2008, pp 268–27
    corecore