5 research outputs found

    Crime Analysis Using Self Learning

    Get PDF
    An unsupervised algorithm for event extraction is proposed . Some small number of seed examples and corpus of text documents are used as inputs. Here, we are interested in finding out relationships which may be spanned over the entire length of the document. The goal is to extract relations among mention that lie across sentences. These mention relations can be binary, ternary or even quaternary relations. For this paper our algorithm concentrates on picking out a specific binary relation in a tagged data set. We are using co reference resolution to solve the problem of relation extraction. Earlier approaches co - refer identity relations while our approach co - refers independent mention pairs based on feature rules. This paper proposes an approach for coreference resolution which uses the EM (Expectation Maximization) algorithm as a reference to train data and co relate entities inter sentential

    Structured querying of annotation-rich web text with shallow semantics

    Get PDF
    Abstract Information discovery on the Web has so far been dominated by keyword-based document search. However, recent years have witnessed arising needs from Web users to search for named entities, e.g., finding all Silicon Valley companies. With existing Web search engines, users have to digest returned Web pages by themselves to find the answers. Entity search has been introduced as a solution to this problem. However, existing entity search systems are limited in their capability to address complex information needs that involve multiple entities and their interrelationships. In this report, we introduce a novel entity-centric structured querying mechanism called Shallow Semantic Query (SSQ) to overcome this limitation. We cover two key technical issues with regard to SSQ, ranking and query processing. Comprehensive experiments show that (1) our ranking model beats state-of-the-art entity ranking methods; (2) the proposed query processing algorithm based on our new Entity-Centric Index is more efficient than a baseline extended from existing entity search systems

    A relational approach to incrementally extracting and querying structure in unstructured data

    No full text
    There is a growing consensus that it is desirable to query over the structure implicit in unstructured documents, and that ideally this capability should be provided incrementally. However, there is no consensus about what kind of system should be used to support this kind of incremental capability. We explore using a relational system as the basis for a workbench for extracting and querying structure from unstructured data. As a proof of concept, we applied our relational approach to support structured queries over Wikipedia. We show that the data set is always available for some form of querying, and that as it is processed, users can pose a richer set of structured queries. We also provide examples of how we can incrementally evolve our understanding of the data in the context of the relational workbench. 1

    Pervasive data science applied to the society of services

    Get PDF
    Dissertação de mestrado integrado em Information Systems Engineering and ManagementWith the technological progress that has been happening in the last few years, and now with the actual implementation of the Internet of Things concept, it is possible to observe an enormous amount of data being collected each minute. Well, this brings along a problem: “How can we process such amount of data in order to extract relevant knowledge in useful time?”. That’s not an easy issue to solve, because most of the time one needs to deal not just with tons but also with different kinds of data, which makes the problem even more complex. Today, and in an increasing way, huge quantities of the most varied types of data are produced. These data alone do not add value to the organizations that collect them, but when subjected to data analytics processes, they can be converted into crucial information sources in the core business. Therefore, the focus of this project is to explore this problem and try to give it a modular solution, adaptable to different realities, using recent technologies and one that allows users to access information where and whenever they wish. In the first phase of this dissertation, bibliographic research, along with a review of the same sources, was carried out in order to realize which kind of solutions already exists and also to try to solve the remaining questions. After this first work, a solution was developed, which is composed by four layers, and consists in getting the data to submit it to a treatment process (where eleven treatment functions are included to actually fulfill the multidimensional data model previously designed); and then an OLAP layer, which suits not just structured data but unstructured data as well, was constructed. In the end, it is possible to consult a set of four dashboards (available on a web application) based on more than twenty basic queries and that allows filtering data with a dynamic query. For this case study, and as proof of concept, the company IOTech was used, a company that provides the data needed to accomplish this dissertation, and based on which five Key Performance Indicators were defined. During this project two different methodologies were applied: Design Science Research, in the research field, and SCRUM, in the practical component.Com o avanço tecnológico que se tem vindo a notar nos últimos anos e, atualmente, com a implementação do conceito Internet of Things, é possível observar o enorme crescimento dos volumes de dados recolhidos a cada minuto. Esta realidade levanta uma problemática: “Como podemos processar grandes volumes dados e extrair conhecimento a partir deles em tempo útil?”. Este não é um problema fácil de resolver pois muitas vezes não estamos a lidar apenas com grandes volumes de dados, mas também com diferentes tipos dos mesmos, o que torna a problemática ainda mais complexa. Atualmente, grandes quantidades dos mais variados tipos de dados são geradas. Estes dados por si só não acrescentam qualquer valor às organizações que os recolhem. Porém, quando submetidos a processos de análise, podem ser convertidos em fontes de informação cruciais no centro do negócio. Assim sendo, o foco deste projeto é explorar esta problemática e tentar atribuir-lhe uma solução modular e adaptável a diferentes realidades, com base em tecnologias atuais que permitam ao utilizador aceder à informação onde e quando quiser. Na primeira fase desta dissertação, foi executada uma pesquisa bibliográfica, assim como, uma revisão da literatura recolhida nessas mesmas fontes, a fim de compreender que soluções já foram propostas e quais são as questões que requerem uma resposta. Numa segunda fase, foi desenvolvida uma solução, composta por quatro modulos, que passa por submeter os dados a um processo de tratamento (onde estão incluídas onze funções de tratamento, com o objetivo de preencher o modelo multidimensional previamente desenhado) e, posteriormente, desenvolver uma camada OLAP que seja capaz de lidar não só com dados estruturados, mas também dados não estruturados. No final, é possível consultar um conjunto de quatro dashboards disponibilizados numa plataforma web que tem como base mais de vinte queries iniciais, e filtros com base numa query dinamica. Para este caso de estudo e como prova de conceito foi utilizada a empresa IOTech, empresa que disponibilizará os dados necessários para suportar esta dissertação, e com base nos quais foram definidos cinco Key Performance Indicators. Durante este projeto foram aplicadas diferentes metodologias: Design Science Research, no que diz respeito à pesquisa, e SCRUM, no que diz respeito à componente prática

    A Confluence of Risks: Control and Compliance in the World of Unstructured Data, Big Data and the Cloud

    Get PDF
    The emergence of powerful new technologies, the existence of large quantities of data, and increasing demands for the extraction of added value from these technologies and data have created a number of significant challenges for those charged with both corporate and information technology management. The possibilities are great, the expectations high, and the risks significant. Organisations seeking to employ cloud technologies and exploit the value of the data to which they have access, be this in the form of "Big Data" available from different external sources or data held within the organisation, in structured or unstructured formats, need to understand the risks involved in such activities. Data owners have responsibilities towards the subjects of the data and must also, frequently, demonstrate that they are in compliance with current standards, laws and regulations. This thesis sets out to explore the nature of the technologies that organisations might utilise, identify the most pertinent constraints and risks, and propose a framework for the management of data from discovery to external hosting that will allow the most significant risks to be managed through the definition, implementation, and performance of appropriate internal control activities
    corecore