2,143 research outputs found

    Base Station Power Optimization for Green Networks Using Reinforcement Learning

    Get PDF
    The next generation mobile networks have to provide high data rates, extremely low latency, and support high connection density. To meet these requirements, the number of base stations will have to increase and this increase will lead to an energy consumption issue. Therefore “green” approaches to the network operation will gain importance. Reducing the energy consumption of base stations is essential for going green and also it helps service providers to reduce operational expenses. However, achieving energy savings without degrading the quality of service is a huge challenge. In order to address this issue, we propose a machine learning based intelligent solution that also incorporates a network simulator. We develop a reinforcement-based learning model by using deep deterministic policy gradient algorithm. Our model update frequently the policy of network switches in a way that, packet be forwarded to base stations with an optimized power level. The policies taken by the network controller are evaluated with a network simulator to ensure the energy consumption reduction and quality of service balance. The reinforcement learning model allows us to constantly learn and adapt to the changing situations in the dynamic network environment, hence having a more robust and realistic intelligent network management policy set. Our results demonstrate that energy efficiency can be enhanced by 32% and 67% in dense and sparse scenarios, respectively

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    corecore