51,934 research outputs found

    Learning Heterogeneous Agent Cooperation via Multiagent League Training

    Full text link
    Many multiagent systems in the real world include multiple types of agents with different abilities and functionality. Such heterogeneous multiagent systems have significant practical advantages. However, they also come with challenges compared with homogeneous systems for multiagent reinforcement learning, such as the non-stationary problem and the policy version iteration issue. This work proposes a general-purpose reinforcement learning algorithm named as Heterogeneous League Training (HLT) to address heterogeneous multiagent problems. HLT keeps track of a pool of policies that agents have explored during training, gathering a league of heterogeneous policies to facilitate future policy optimization. Moreover, a hyper-network is introduced to increase the diversity of agent behaviors when collaborating with teammates having different levels of cooperation skills. We use heterogeneous benchmark tasks to demonstrate that (1) HLT promotes the success rate in cooperative heterogeneous tasks; (2) HLT is an effective approach to solving the policy version iteration problem; (3) HLT provides a practical way to assess the difficulty of learning each role in a heterogeneous team

    Heterogeneous Multi-Agent Reinforcement Learning via Mirror Descent Policy Optimization

    Full text link
    This paper presents an extension of the Mirror Descent method to overcome challenges in cooperative Multi-Agent Reinforcement Learning (MARL) settings, where agents have varying abilities and individual policies. The proposed Heterogeneous-Agent Mirror Descent Policy Optimization (HAMDPO) algorithm utilizes the multi-agent advantage decomposition lemma to enable efficient policy updates for each agent while ensuring overall performance improvements. By iteratively updating agent policies through an approximate solution of the trust-region problem, HAMDPO guarantees stability and improves performance. Moreover, the HAMDPO algorithm is capable of handling both continuous and discrete action spaces for heterogeneous agents in various MARL problems. We evaluate HAMDPO on Multi-Agent MuJoCo and StarCraftII tasks, demonstrating its superiority over state-of-the-art algorithms such as HATRPO and HAPPO. These results suggest that HAMDPO is a promising approach for solving cooperative MARL problems and could potentially be extended to address other challenging problems in the field of MARL

    A Cooperative Optimal Control Framework for Connected and Automated Vehicles in Mixed Traffic Using Social Value Orientation

    Full text link
    In this paper, we develop a socially cooperative optimal control framework for connected and automated vehicles (CAVs) in mixed traffic using social value orientation (SVO). In our approach, we formulate the interaction between a CAV and a human-driven vehicle (HDV) as a simultaneous game to facilitate the derivation of a Nash equilibrium. In the imposed game, each vehicle minimizes a weighted sum of its egoistic objective and a cooperative objective. The SVO angles are used to quantify preferences of the vehicles toward the egoistic and cooperative objectives which lead to an appropriate design of weighting factors in a multi-objective optimal control problem. We prove that by solving the proposed optimal control problem, a Nash equilibrium can be obtained. To estimate the SVO angle of the HDV, we develop a receding horizon estimation based on maximum entropy inverse reinforcement learning. The effectiveness of the proposed approach is demonstrated by numerical simulations at a highway on-ramp merging scenario.Comment: submitted to CDC202

    Task-Based Information Compression for Multi-Agent Communication Problems with Channel Rate Constraints

    Get PDF
    A collaborative task is assigned to a multiagent system (MAS) in which agents are allowed to communicate. The MAS runs over an underlying Markov decision process and its task is to maximize the averaged sum of discounted one-stage rewards. Although knowing the global state of the environment is necessary for the optimal action selection of the MAS, agents are limited to individual observations. The inter-agent communication can tackle the issue of local observability, however, the limited rate of the inter-agent communication prevents the agent from acquiring the precise global state information. To overcome this challenge, agents need to communicate their observations in a compact way such that the MAS compromises the minimum possible sum of rewards. We show that this problem is equivalent to a form of rate-distortion problem which we call the task-based information compression. We introduce a scheme for task-based information compression titled State aggregation for information compression (SAIC), for which a state aggregation algorithm is analytically designed. The SAIC is shown to be capable of achieving near-optimal performance in terms of the achieved sum of discounted rewards. The proposed algorithm is applied to a rendezvous problem and its performance is compared with several benchmarks. Numerical experiments confirm the superiority of the proposed algorithm.Comment: 13 pages, 9 figure

    Guided Deep Reinforcement Learning for Swarm Systems

    Full text link
    In this paper, we investigate how to learn to control a group of cooperative agents with limited sensing capabilities such as robot swarms. The agents have only very basic sensor capabilities, yet in a group they can accomplish sophisticated tasks, such as distributed assembly or search and rescue tasks. Learning a policy for a group of agents is difficult due to distributed partial observability of the state. Here, we follow a guided approach where a critic has central access to the global state during learning, which simplifies the policy evaluation problem from a reinforcement learning point of view. For example, we can get the positions of all robots of the swarm using a camera image of a scene. This camera image is only available to the critic and not to the control policies of the robots. We follow an actor-critic approach, where the actors base their decisions only on locally sensed information. In contrast, the critic is learned based on the true global state. Our algorithm uses deep reinforcement learning to approximate both the Q-function and the policy. The performance of the algorithm is evaluated on two tasks with simple simulated 2D agents: 1) finding and maintaining a certain distance to each others and 2) locating a target.Comment: 15 pages, 8 figures, accepted at the AAMAS 2017 Autonomous Robots and Multirobot Systems (ARMS) Worksho
    • …
    corecore