1,967 research outputs found

    Convex Optimization without Projection Steps

    Full text link
    For the general problem of minimizing a convex function over a compact convex domain, we will investigate a simple iterative approximation algorithm based on the method by Frank & Wolfe 1956, that does not need projection steps in order to stay inside the optimization domain. Instead of a projection step, the linearized problem defined by a current subgradient is solved, which gives a step direction that will naturally stay in the domain. Our framework generalizes the sparse greedy algorithm of Frank & Wolfe and its primal-dual analysis by Clarkson 2010 (and the low-rank SDP approach by Hazan 2008) to arbitrary convex domains. We give a convergence proof guaranteeing {\epsilon}-small duality gap after O(1/{\epsilon}) iterations. The method allows us to understand the sparsity of approximate solutions for any l1-regularized convex optimization problem (and for optimization over the simplex), expressed as a function of the approximation quality. We obtain matching upper and lower bounds of {\Theta}(1/{\epsilon}) for the sparsity for l1-problems. The same bounds apply to low-rank semidefinite optimization with bounded trace, showing that rank O(1/{\epsilon}) is best possible here as well. As another application, we obtain sparse matrices of O(1/{\epsilon}) non-zero entries as {\epsilon}-approximate solutions when optimizing any convex function over a class of diagonally dominant symmetric matrices. We show that our proposed first-order method also applies to nuclear norm and max-norm matrix optimization problems. For nuclear norm regularized optimization, such as matrix completion and low-rank recovery, we demonstrate the practical efficiency and scalability of our algorithm for large matrix problems, as e.g. the Netflix dataset. For general convex optimization over bounded matrix max-norm, our algorithm is the first with a convergence guarantee, to the best of our knowledge

    A Constrained Matrix-Variate Gaussian Process for Transposable Data

    Full text link
    Transposable data represents interactions among two sets of entities, and are typically represented as a matrix containing the known interaction values. Additional side information may consist of feature vectors specific to entities corresponding to the rows and/or columns of such a matrix. Further information may also be available in the form of interactions or hierarchies among entities along the same mode (axis). We propose a novel approach for modeling transposable data with missing interactions given additional side information. The interactions are modeled as noisy observations from a latent noise free matrix generated from a matrix-variate Gaussian process. The construction of row and column covariances using side information provides a flexible mechanism for specifying a-priori knowledge of the row and column correlations in the data. Further, the use of such a prior combined with the side information enables predictions for new rows and columns not observed in the training data. In this work, we combine the matrix-variate Gaussian process model with low rank constraints. The constrained Gaussian process approach is applied to the prediction of hidden associations between genes and diseases using a small set of observed associations as well as prior covariances induced by gene-gene interaction networks and disease ontologies. The proposed approach is also applied to recommender systems data which involves predicting the item ratings of users using known associations as well as prior covariances induced by social networks. We present experimental results that highlight the performance of constrained matrix-variate Gaussian process as compared to state of the art approaches in each domain.Comment: 23 pages, Preliminary version, Accepted for publication in Machine Learnin

    Path Following in the Exact Penalty Method of Convex Programming

    Full text link
    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞\infty, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value

    Optimal Experimental Design for Constrained Inverse Problems

    Full text link
    In this paper, we address the challenging problem of optimal experimental design (OED) of constrained inverse problems. We consider two OED formulations that allow reducing the experimental costs by minimizing the number of measurements. The first formulation assumes a fine discretization of the design parameter space and uses sparsity promoting regularization to obtain an efficient design. The second formulation parameterizes the design and seeks optimal placement for these measurements by solving a small-dimensional optimization problem. We consider both problems in a Bayes risk as well as an empirical Bayes risk minimization framework. For the unconstrained inverse state problem, we exploit the closed form solution for the inner problem to efficiently compute derivatives for the outer OED problem. The empirical formulation does not require an explicit solution of the inverse problem and therefore allows to integrate constraints efficiently. A key contribution is an efficient optimization method for solving the resulting, typically high-dimensional, bilevel optimization problem using derivative-based methods. To overcome the lack of non-differentiability in active set methods for inequality constraints problems, we use a relaxed interior point method. To address the growing computational complexity of empirical Bayes OED, we parallelize the computation over the training models. Numerical examples and illustrations from tomographic reconstruction, for various data sets and under different constraints, demonstrate the impact of constraints on the optimal design and highlight the importance of OED for constrained problems.Comment: 19 pages, 8 figure

    Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset

    Full text link
    Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix in a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.Comment: 121 pages, 5 figures, submitted to Computer Science Review. arXiv admin note: text overlap with arXiv:1312.7167, arXiv:1109.6297, arXiv:1207.3438, arXiv:1105.2126, arXiv:1404.7592, arXiv:1210.0805, arXiv:1403.8067 by other authors, Computer Science Review, November 201

    Compressive Conjugate Directions: Linear Theory

    Full text link
    We present a powerful and easy-to-implement iterative algorithm for solving large-scale optimization problems that involve L1L_1/total-variation (TV) regularization. The method is based on combining the Alternating Directions Method of Multipliers (ADMM) with a Conjugate Directions technique in a way that allows reusing conjugate search directions constructed by the algorithm across multiple iterations of the ADMM. The new method achieves fast convergence by trading off multiple applications of the modeling operator for the increased memory requirement of storing previous conjugate directions. We illustrate the new method with a series of imaging and inversion applications.Comment: 32 pages, 10 figure

    Nonnegative Matrix Factorization for Signal and Data Analytics: Identifiability, Algorithms, and Applications

    Full text link
    Nonnegative matrix factorization (NMF) has become a workhorse for signal and data analytics, triggered by its model parsimony and interpretability. Perhaps a bit surprisingly, the understanding to its model identifiability---the major reason behind the interpretability in many applications such as topic mining and hyperspectral imaging---had been rather limited until recent years. Beginning from the 2010s, the identifiability research of NMF has progressed considerably: Many interesting and important results have been discovered by the signal processing (SP) and machine learning (ML) communities. NMF identifiability has a great impact on many aspects in practice, such as ill-posed formulation avoidance and performance-guaranteed algorithm design. On the other hand, there is no tutorial paper that introduces NMF from an identifiability viewpoint. In this paper, we aim at filling this gap by offering a comprehensive and deep tutorial on model identifiability of NMF as well as the connections to algorithms and applications. This tutorial will help researchers and graduate students grasp the essence and insights of NMF, thereby avoiding typical `pitfalls' that are often times due to unidentifiable NMF formulations. This paper will also help practitioners pick/design suitable factorization tools for their own problems.Comment: accepted version, IEEE Signal Processing Magazine; supplementary materials added. Some minor revisions implemente

    Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview

    Full text link
    Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.Comment: Invited overview articl

    Beating level-set methods for 3D seismic data interpolation: a primal-dual alternating approach

    Full text link
    Acquisition cost is a crucial bottleneck for seismic workflows, and low-rank formulations for data interpolation allow practitioners to `fill in' data volumes from critically subsampled data acquired in the field. Tremendous size of seismic data volumes required for seismic processing remains a major challenge for these techniques. We propose a new approach to solve residual constrained formulations for interpolation. We represent the data volume using matrix factors, and build a block-coordinate algorithm with constrained convex subproblems that are solved with a primal-dual splitting scheme. The new approach is competitive with state of the art level-set algorithms that interchange the role of objectives with constraints. We use the new algorithm to successfully interpolate a large scale 5D seismic data volume, generated from the geologically complex synthetic 3D Compass velocity model, where 80% of the data has been removed.Comment: 16 pages, 7 figure

    Managing Randomization in the Multi-Block Alternating Direction Method of Multipliers for Quadratic Optimization

    Full text link
    The Alternating Direction Method of Multipliers (ADMM) has gained a lot of attention for solving large-scale and objective-separable constrained optimization. However, the two-block variable structure of the ADMM still limits the practical computational efficiency of the method, because one big matrix factorization is needed at least once even for linear and convex quadratic programming. This drawback may be overcome by enforcing a multi-block structure of the decision variables in the original optimization problem. Unfortunately, the multi-block ADMM, with more than two blocks, is not guaranteed to be convergent. On the other hand, two positive developments have been made: first, if in each cyclic loop one randomly permutes the updating order of the multiple blocks, then the method converges in expectation for solving any system of linear equations with any number of blocks. Secondly, such a randomly permuted ADMM also works for equality-constrained convex quadratic programming even when the objective function is not separable. The goal of this paper is twofold. First, we add more randomness into the ADMM by developing a randomly assembled cyclic ADMM (RAC-ADMM) where the decision variables in each block are randomly assembled. We discuss the theoretical properties of RAC-ADMM and show when random assembling helps and when it hurts, and develop a criterion to guarantee that it converges almost surely. Secondly, using the theoretical guidance on RAC-ADMM, we conduct multiple numerical tests on solving both randomly generated and large-scale benchmark quadratic optimization problems, which include continuous, and binary graph-partition and quadratic assignment, and selected machine learning problems. Our numerical tests show that the RAC-ADMM, with a variable-grouping strategy, could significantly improve the computation efficiency on solving most quadratic optimization problems.Comment: Expanded and streamlined theoretical sections. Added comparisons with other multi-block ADMM variants. Updated Computational Studies Section on continuous problems -- reporting primal and dual residuals instead of objective value gap. Added selected machine learning problems (ElasticNet/Lasso and Support Vector Machine) to Computational Studies Sectio
    • …
    corecore