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Abstract In this paper we combine an infeasible Interior Point Method (IPM) with the Proximal
Method of Multipliers (PMM). The resulting algorithm (IP-PMM) is interpreted as a primal-dual
regularized IPM, suitable for solving linearly constrained convex quadratic programming problems.
We apply few iterations of the interior point method to each sub-problem of the proximal method
of multipliers. Once a satisfactory solution of the PMM sub-problem is found, we update the PMM
parameters, form a new IPM neighbourhood and repeat this process. Given this framework, we prove
polynomial complexity of the algorithm, under standard assumptions. To our knowledge, this is the
first polynomial complexity result for a primal-dual regularized IPM. The algorithm is guided by
the use of a single penalty parameter; that of the logarithmic barrier. In other words, we show that
IP-PMM inherits the polynomial complexity of IPMs, as well as the strict convexity of the PMM
sub-problems. The updates of the penalty parameter are controlled by IPM, and hence are well-
tuned, and do not depend on the problem solved. Furthermore, we study the behavior of the method
when it is applied to an infeasible problem, and identify a necessary condition for infeasibility. The
latter is used to construct an infeasibility detection mechanism. Subsequently, we provide a robust
implementation of the presented algorithm and test it over a set of small to large scale linear and
convex quadratic programming problems. The numerical results demonstrate the benefits of using
regularization in IPMs as well as the reliability of the method.

1 Introduction
1.1 Primal-Dual Pair of Convex Quadratic Programming Problems

In this paper, we consider the following primal-dual pair of linearly constrained convex quadratic
programming problems, in the standard form:

ming (ch + %xTQm), s.t. Ax =b, >0, (P)

maxz,y,z (bTy - %JITQI), st. —Qr+ATy+z2=c 2>0, (D)

with ¢,z,z € R, b,y € R™, A € R"™*", and symmetric positive semi-definite Q € R"*™ (i.e. Q = 0).
Without loss of generality we assume that m < n. Duality, between the problems (P)-(D), arises by
introducing the Lagrangian function of the primal, using y € R™ and z € R", 2 > 0, as the Lagrange
multipliers for the equality and inequality constraints, respectively. Hence, we obtain:

L(z,y,z) = T+ %xTQx - yT(Ax —b) — 2o, (1)
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Using the Lagrangian function, one can formulate the first-order optimality conditions (known as
Karush-Kuhn-Tucker (KKT) conditions) for this primal-dual pair. In particular, we define the vector
w= (27,47, 2T)T, and compute the gradient of £(w). Using VL(w), as well as the complementarity
conditions, we may define a function F(w) : R*"*™ — R?"*™ ysing which, we write the KKT

conditions as follows:

c+Qu—ATy—2 0
F(w) = Az —b =|0], (x,2) > (0,0), (2)
XZen 0

where e, denotes the vector of ones of size n, while X, Z € R™*"™ denote the diagonal matrices
satisfying X% = ¢ and Z% = 2¢, for all i € {1,--- ,n}. For the rest of this manuscript, superscripts
will denote the components of a vector/matrix. For simplicity of exposition, when referring to convex
quadratic programming problems, we implicitly assume that the problems are linearly constrained. If
both (P) and (D) are feasible problems, it can easily be verified that there exists an optimal primal-
dual triple (z,y, z), satisfying the KK'T optimality conditions of this primal-dual pair (see for example
[7, Prop. 2.3.4]).

1.2 A Primal-Dual Interior Point Method

Primal-dual Interior Point Methods (IPMs) are popular for simultaneously solving (P) and (D),
iteratively. As indicated in the name, primal-dual IPMs act on both primal and dual variables. There
are numerous variants of IPMs and the reader is referred to [17] for an extended literature review.
In this paper, an infeasible primal-dual IPM is presented. Such methods are called infeasible because
they allow intermediate iterates of the method to be infeasible for (P)-(D), in contrast to feasible
IPMs, which require intermediate iterates to be strictly feasible.

Interior point methods handle the non-negativity constraints of the problems with logarithmic
barriers in the objective. That is, at each iteration, we choose a barrier parameter p and form the
logarithmic barrier primal-dual pair:

n
. N s j
ming (c T+ 5¢ Qr — M;lnx]) s.t. Ar = b, (3)
j=
1 - :
maXe,y,z ( bTy — §xTQx + uZln zj) s.t. —Qzr+ ATy +z=c, (4)
j=1

in which non-negativity constraints z > 0 and z > 0 are implicit. We form the KKT optimality
conditions of the pair (3)-(4), by introducing the Lagrangian of the primal barrier problem:

n
LM (z,y) =Tz + %LETQx —y' (Az —b) - MZlnxj.
i=1

Equating the gradient of the previous function to zero, gives the following conditions:
VwELPM(;I:,y) —c+Qr—ATy—pux~te, =0,
VLM (z,y) = Az —b = 0.
Using the variable z = uX ~'ey, the final conditions read as follows:
c+Qr—ATy—2=0

Az —b=0
XZen — pen = 0.

At each IPM iteration, we want to approximately solve the following mildly non-linear system:

c+ Qzxr — ATy —z 0
My = | b-as | = o], (5)
XZen — ouen 0
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where FEMM(w) = 0 is a slightly perturbed form of the previously presented optimality conditions. In
particular, o € (0,1) is a centering parameter which determines how fast u will be forced to decrease
at the next IPM iteration. For o = 1, we recover the barrier optimality conditions, while for ¢ = 0
we recover the initial problems’ optimality conditions (2). The efficiency of the method depends
heavily on the choice of o. In fact, various improvements of the traditional IPM schemes have been
proposed in the literature, which solve the previous system for multiple carefully chosen values of
the centering parameter o and of the right hand side, at each IPM iteration. These are the so called
predictor-corrector schemes, proposed for the first time in [23]. Various extensions of such methods
have been proposed and analyzed in the literature (e.g. see [16,35] and references therein). However,
for simplicity of exposition, we will follow the traditional approach; o is chosen heuristically at each
iteration, and the previous system is solved only once.

In order to approximately solve the system ngM(w) = 0 for each value of y, the most common
approach is to apply Newton’s method. Newton’s method is favored for systems of this form, due
to the self-concordance of the function In(-). For more details on this subject, the interested reader
is referred to [25, Chapter 2]. At the beginning of the k-th iteration of the IPM, for k£ > 0, we have

T
available an iterate wy, = (:cg, y,{, zg)T7 and a barrier parameter uy, defined as pp = z’“nzk . We choose
a value for the centering parameter oy, € (0,1) and form the Jacobian of Fgf}\[fk(-), evaluated at wy,.

Then, the Newton direction is determined by solving the following system of equations:

QA" 1] [Azy —c— Qui + ATyg + 2
A 0 O Ay, | = — Az — b . (6)
Zk’ 0 Xk Azk Xkaen — OpMUE€En

Notice that as up — 0, the optimal solution of (3)-(4) converges to the optimal solution of (P)-(D).
Polynomial convergence of such methods has been established multiple times in the literature (see
for example [36,37] and the references therein).

1.3 Proximal Point Methods
1.8.1 Primal Proximal Point Method

One possible method for solving the primal problem (P), is the so called proximal point method.
Given an arbitrary starting point xo, the k-th iteration of the method is summarized by the following
minimization problem:

. 1
ZTpy1 = argmin {cch + ixTQac + %Hx — a3, st. Az =b, x> 0}7
x

where py, > 0 is a non-increasing sequence of penalty parameters, and xj, is the current estimate for
an optimal solution of (P) (the use of uj is not a mistake; as will become clearer in Section 2, we
intend to use the barrier parameter pj to control both the IPM and the proximal method). Notice
that such an algorithm is not practical, since we have to solve a sequence of sub-problems of similar
difficulty to that of (P). Nevertheless, the proximal method contributes the pjI term to the Hessian
of the objective, and hence the sub-problems are strongly convex. This method is known to achieve
a linear convergence rate (and possibly superlinear if p; — 0 at a suitable rate), as shown in [13,
], among others, even in the case where the minimization sub-problems are solved approximately.
Various extensions of this method have been proposed in the literature. For example, one could
employ different penalty functions other than the typical 2-norm penalty presented previously (e.g.
see [9,11,19]).
Despite the fact that such algorithms are not practical, they have served as a powerful theoretical
tool and a basis for other important methods. For an extensive review of the applications of standard
primal proximal point methods, we refer the reader to [28].

1.8.2 Dual Proximal Point Method

It is a well-known fact, observed for the first time in [31], that the application of the proximal point
method on the dual problem, is equivalent to the application of the augmented Lagrangian method on
the primal problem, which was proposed for the first time in [18,30]. In view of the previous fact, we
will present the derivation of the augmented Lagrangian method for the primal problem (P), while
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having in mind that an equivalent reformulation of the model results in the proximal point method
for the dual (D) (see [8, Chapter 3.4.4] or [12,31]).

We start by defining the augmented Lagrangian function of (P). Given an arbitrary starting guess
yo for the dual variable, the augmented Lagrangian function is defined at the k-th iteration as:

1 1
ﬁﬁfM(m;yk) =cle+ ixTQx — yg(A:v —-b)+ mHA:c — b||§, (7

where p;, > 0 is a non-increasing sequence of penalty parameters and y;, is the current estimate of
an optimal Lagrange multiplier vector. The augmented Lagrangian method (ALM) is summarized
below:

. ALM
s Yk tox >
Tky1 = argmin {Luk (z;yk), st.x> O},

1
Yk+1 = Yk — *(A«’Ek+1 - b)~
2%

Notice that the update of the Lagrange multiplier estimates can be interpreted as the application
of the dual ascent method. A different type of update would be possible, however, the presented update
is cheap and effective, due to the strong concavity of the proximal (“regularized”) dual problem (since
ug > 0). Convergence and iteration complexity of such methods have been established multiple times
(see for example [21,31]). There is a vast literature on the subject of augmented Lagrangian methods.
For a plethora of technical results and references, the reader is referred to [6]. For convergence results
of various extended versions of the method, the reader is referred to [11].

It is worth noting here that a common issue, arising when using augmented Lagrangian methods,
is that of the choice of the penalty parameter. To the authors’ knowledge, an optimal tuning for this
parameter is still unknown.

1.3.83 Proximal Method of Multipliers

In [31], the author presented, for the first time, the prozimal method of multipliers (PMM). The
method consists of applying both primal and dual proximal point methods for solving (P)-(D). For
an arbitrary starting point (xo,y0), and using the already defined augmented Lagrangian function,
given in (7), PMM can be summarized by the following iteration:

. ALM
Tp41 = argmin {E#k (zyy) + %Hx — a3, stz > O}7

(8)

1
Yk+1 = Yk — *(Aﬂ%ﬂ - b)-
M

One can observe that at every iteration of the method, the primal problem that we have to solve
is strongly convex, while its dual, strongly concave. As shown in [31], the addition of the term
B ||z —xy, |2 in the augmented Lagrangian method does not affect its convergence rate, while ensuring
better numerical behaviour of its iterates. An extension of this algorithm, allowing for the use of more
general penalties, can be found in [11].

We can write (8) equivalently by making use of the maximal monotone operator T : R"t™ =
R™*™ associated to (P)-(D) (see [31,32]), that is defined as:

Te(z,y) = {(u,0) v € Qe+ c— ATy + 864 (x),u = Az — b}, 9)

where 64 (+) is an indicator function defined as:

00 if3j: 27 <0,
d = 10
+(@) {O otherwise, (10)
and O(-) denotes the sub-differential of a function. In our case, we have that (see [33, Section 23]):

J — if 27
z€85+(:c)<:>{z 0 itz >0, Vi=A{1---,n}

d<0 ifz?=0."
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By convention, if there exists a component j such that z; < 0, we have that 864 (z) = {0}. Given a
bounded pair (z*,y*) such that 0 € Ty (z*,y"), we can retrieve a vector z* € 854 (z"), using which
(z*,y*,—2z") is an optimal solution for (P)-(D). By letting:

1 —1
Ppi= (I + —T2) L, 11
= Uiy + -T2) 1)

we can express (8) as:
(@t 1, Y1) = Pr(@r, i), (12)

and it can be shown that Py is single valued and non-expansive (see [32]).

1.4 Regularization in Interior Point Methods

In the context of interior point methods, it is often beneficial to include a regularization in order
to improve the spectral properties of the system matrix in (6). For example, notice that if the
constraint matrix A is rank-deficient, then the matrix in (6) might not be invertible. The latter can
be immediately addressed by the introduction of a dual regularization, say 6 > 0, ensuring that
rank([A | 6I,n]) = m. For a detailed analysis of the effect of dual regularization on such systems, the
reader is referred to [2]. On the other hand, the most common and efficient approach in practice is to
eliminate the variables Az from system (6), and solve the following symmetric reduced (augmented)
system instead:

—(Q+06; 1) AT [Axy, _ ¢+ Quy — ATy, — o X, te (13)
A 0| |2y b— Az, ’

where ), = Xka_l. Since Xz — 0 close to optimality, one can observe that the matrix @y will
contain some very large and some very small elements. Hence, the matrix in (13) will be increasingly
ill-conditioned, as we approach optimality. The introduction of a primal regularization, say p > 0, can
ensure that the matrix Q—l—@,;l +pIn will have eigenvalues that are bounded away from zero, and hence
a significantly better worst-case conditioning than that of Q + 9;1. In other words, regularization is
commonly employed in IPMs, as a means of improving robustness and numerical stability (see [1]).
As we will discuss later, by introducing regularization in IPMs, one can also gain efficiency. This is
because regularization transforms the matrix in (13) into a quasi-definite one. It is known that such
matrices can be factorized efficiently (see [34]).

In view of the previous discussion, one can observe that a very natural way of introducing primal
regularization to problem (P), is through the application of the primal proximal point method.
Similarly, dual regularization can be incorporated through the application of the dual proximal point
method. This is a well-known fact. The authors in [1] presented a primal-dual regularized IPM, and
interpreted this regularization as the application of the proximal point method. Consequently, the
authors in [12] developed a primal-dual regularized IPM, which applies PMM to solve (P), and a
single IPM iteration is employed for approximating the solution of each PMM sub-problem. There,
global convergence of the method was proved, under some assumptions. A variation of the method
proposed in [12] is given in [29], where general non-diagonal regularization matrices are employed, as
a means of further improving factorization efficiency.

Similar ideas have been applied in the context of IPMs for general non-linear programming prob-
lems. For example, the authors in [3] presented an interior point method combined with the augmented
Lagrangian method, and proved that, under some general assumptions, the method converges at a
superlinear rate. Similar approaches can be found in [4,5,14], among others.

In this paper, we develop a path-following primal-dual regularized IPM for solving convex quadratic
programming problems. The algorithm is obtained by applying one or a few iterations of the infeasible
primal-dual interior point method in order to solve sub-problems arising from the primal-dual prox-
imal point method. Under standard assumptions, we prove polynomial complexity of the algorithm
and provide global convergence guarantees. To our knowledge, this is the first polynomial complexity
result for a general primal-dual regularized IPM scheme. Notice that a complexity result is given
for a primal regularized IPM for linear complementarity problems in [38]. However, the authors sig-
nificantly alter the Newton directions, making their method very difficult to generalize and hard to
achieve efficiency in practice. An important feature of the presented method is that it makes use of
only one penalty parameter, that is the logarithmic penalty term. The aforementioned penalty has
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been extensively studied and understood, and as a result, IPMs achieve fast and reliable convergence
in practice. This is not the case for the penalty parameter of the proximal methods. In other words,
IP-PMM inherits the fast and reliable convergence properties of IPMs, as well as the strong con-
vexity of the PMM sub-problems, hence improving the conditioning of the Newton system solved
at each TPM iteration, while providing a reliable tuning for the penalty parameter, independently
of the problem at hand. The proposed approach is implemented and its reliability is demonstrated
through extensive experimentation. The implementation slightly deviates from the theory, however,
most of the theoretical results are verified in practice. The main purpose of this paper is to provide a
reliable method that can be used for solving general convex quadratic problems, without the need of
pre-processing, or of previous knowledge about the problems. The implemented method is supported
by a novel theoretical result, indicating that regularization alleviates various issues arising in IPMs,
without affecting their important worst-case polynomial complexity. As a side-product of the theory,
an implementable infeasibility detection mechanism is also derived and tested in practice.

Before completing this section, let us introduce some notation that is used in the rest of this
paper. An iteration of the algorithm is denoted by k € N. Given an arbitrary matrix (vector) A (=,
respectively), Ay (or xy) denotes that A (resp., z) depends on the iteration k. An optimal solution to
the pair (P)-(D) will be denoted as (z*,y", 2*). Optimal solutions of different primal-dual pairs will
be denoted using an appropriate subscript, in order to distinguish them. For example, we use the
notation (zy,yr, 2, ), for representing an optimal solution for a PMM sub-problem. The subscript is
employed for distinguishing the “regularized” solution, from the solution of the initial problem, that
is (z*,y*, 2*). Any norm (semi-norm respectively) is denoted by || - ||, where v is used to distinguish
between different norms. For example, the 2-norm (Euclidean norm) will be denoted as || - ||2. When
a given scalar is assumed to be independent of n and m, we mean that this quantity does not depend
on the problem dimensions. Given two vectors of the same size z, y, x > y denotes that the inequality
holds component-wise. Given two logical statements 71, Ts, the condition T7 A T is true only when
both T} and T are true. Let an arbitrary matrix A be given. The maximum (minimum) singular value
of A is denoted as Nmax(A) (min(A)). Similarly, if A is square, its maximum eigenvalue is denoted
as Vmax(A4). Given a set of indices, say B C {1,...,n}, and an arbitrary vector (or matrix) z € R"
(A € R"™*"), 2B (AP respectively) denotes that sub-vector (sub-matrix) containing the elements of
z (columns and rows of A) whose indices belong to B. Finally, the cardinality of B is denoted as |B|.

The rest of the paper is organized as follows. In Section 2, we provide the algorithmic framework
of the method. Consequently, in Section 3, we prove polynomial complexity of the algorithm, and
global convergence is established. In Section 4, a necessary condition for infeasibility is derived, which
is later used to construct an infeasibility detection mechanism. Numerical results of the implemented
method are presented and discussed in Section 5. Finally, we derive some conclusions in Section 6.

2 Algorithmic Framework

In the previous section, we presented all the necessary tools for deriving the proposed Interior Point-
Proximal Method of Multipliers (IP-PMM). Effectively, we would like to merge the proximal method
of multipliers with the infeasible interior point method. For that purpose, assume that, at some
iteration k of the method, we have available an estimate A; for a Lagrange multiplier vector. Similarly,
we denote by (i the estimate of a primal solution. We define the proximal penalty function that has
to be minimized at the k-th iteration of PMM, for solving (P), given the estimates Ag, (i, as:

1 1
L™ @3 G ) = T+ 90T Qe = AL (v —0) + oA = b+ e — Gll3, (14)

with pp > 0 some sequence of non-increasing penalty parameters. In order to solve the PMM sub-
problem (8), we will apply one (or a few) iterations of the previously presented infeasible IPM. To
do that, we alter (14), by including logarithmic barriers, that is:

n
Lo ™M s G ) = LM (2 G M) — Y I, (15)
i=1

and we treat uj as the barrier parameter. In order to form the optimality conditions of this sub-
problem, we equate the gradient of ﬁﬂf_PMM(»; Ak, Ck) to the zero vector, i.e.:

1

EAT(Ax —b) + pr(@ = ) — X en =0.

c+Qz— AT, +
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Following the developments in [3], we can define the variables y = X\, — ;}T(Am —b) and z =

prX Len, to get the following (equivalent) system of equations (first-order optimality conditions):

c+Qu— ATy —z+p(e—¢)] [0
Az + pp(y — M) — b = |0]. (16)
Xz — ppen 0

Let us introduce the following notation, that will be used later.

Definition 1 Let two real-valued positive functions be given: T'(z) : Ry — Ry, f(z) : Ry — Ry,
with Ry = {z € R: z > 0}. We say that:

o T(z) =0(f(x)) (as z — o0) if and only if, there exist constants ¢ > 0, zg > 0, such that:
T(z) < cf(z), forall z > =o.
o T(x) = 2(f(z)) if and only if, there exist constants ¢ > 0, xzg > 0, such that:
T(z) > cf(z), forall z > =o.
e T(x) =0O(f(x)) if and only if, T'(z) = O(f(z)) and T'(z) = 2(f(z)).
Next, given two arbitrary vectors b € R™, ¢ € R™, we define the following semi-norm:

(b, 0)lla = min {|i(z, )12+ Az =b,—Qu+ ATy +2=c}. (17)

This semi-norm has been used before in [24], as a way to measure infeasibility for the case of linear
programming problems (Q = 0). For a discussion on the properties of the aforementioned semi-norm,
as well as how one can evaluate it (using the QR factorization of A), the reader is referred to [24,
Section 4].

Starting Point. At this point, we are ready to define the starting point for IP-PMM. For that, we set
(zo,20) = p(en, en), for some p > 0. We also set yo to some arbitrary vector (e.g. yo = em ), such that

llyolloo = O(1) (i.e. the absolute value of its entries is independent of n and m), and po = “2=°. Then
we have:
Azo =b+b, —Quo+ ATyo+ 20 = c+ ¢, Co = 0, Ao = yo. (18)

for some vectors b, ¢.

Neighbourhood. We mentioned earlier that we develop a path-following method. Hence, we have to
describe a neighbourhood in which the iterations of the method should lie. However, unlike typical
path-following methods, we define a family of neighbourhoods that depend on the PMM sub-problem
parameters.

Given the starting point in (18), penalty u, and estimates A, (i, we define the following regularized
set of centers:

Pﬂk(gkv)\k) = {(.T),y, Z) € Cﬂk (Ckv)‘k) : (.T,Z) > (070)7 Xz = ,U/ken},

where ( ) T
o ) Az + e (y — Ag) = b+ EEb,
Cltk((/w)‘k:) = {(x,y,z) . _Qx+ATy+Z_Mk(1’_Ck):C+%E 5
and b, ¢ are as in (18). The term set of centers originates from [24], where a similar set is studied.

In order to enlarge the previous set, we define the following set:

Az 4 iy — M) = b+ L2 (b + by),
Cl‘«k(gk7)‘k) = {(1’7:!/,2) : *QZ’ +~ATy+quk($ 7~<k) = C+ m(é+6k)}a
[[(0ks Ck)ll2 < Cny [[(bks Gkl < vap

where Cy > 0 is a constant, v4 € (0,1), and p > 0 is as defined in the starting point. The vectors
by, and &, represent the current scaled (by Z—Z) infeasibility and vary depending on the iteration k.
In particular, these vectors can be formally defined recursively, depending on the iterations of IP-
PMM. However, such a definition is not necessary for the developments to follow. In essence, the
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only requirement is that these scaled infeasibility vectors are bounded above by some constants, with
respect to the 2-norm as well as the semi-norm defined in (17). Using the latter set, we are now ready
to define a family of neighbourhoods:

Nﬂk((]ﬂ )\k) = {(II,', y7 Z) € C#k((kv )‘k) : (.’E, Z) > (070)7 xlzz Z ’y,uukv Z c {17 s 7n}%7 )
19

where v, € (0,1) is a constant preventing component-wise complementarity products from approach-

ing zero faster than up = % Obviously, the starting point defined in (18) belongs to the neigh-

bourhood Ny, (¢o, Xo), with (bo, &) = (0,0). Notice from the definition of the neighbourhood, that it

depends on the choice of the constants C, v4, 7. However, as the neighbourhood also depends on

the parameters p, A, (i, we omit the dependence on the constants, for simplicity of notation.

Newton System. At every IP-PMM iteration, we approximately solve a perturbed form of the condi-
tions in (16), by applying a variation of Newton’s method. In particular, we form the Jacobian of the
left-hand side of (16) and we perturb the right-hand side of the Newton equation as follows:

—(Q+ppln) AT 17 [Axy,
A peIm 0 | | Ay | =
Zk 0 Xk Azk

—(c+ Z2) — Quy, + ATyp + 2 — oppu (ke — ()
- Az, + oppr(yr — M) — (b + ZLED) :
Xkaen — O MUEEn

where b, ¢ are as in (18). Notice that we perturb the right-hand side of the Newton system in order
to ensure that the iterates remain in the neighbourhood (19), while trying to reduce the value of the
penalty (barrier) parameter py.

We are now able to derive Algorithm IP-PMM, summarizing the proposed interior point-proximal
method of multipliers. We will prove polynomial complexity of this scheme in the next section, under
standard assumptions.

Algorithm IP-PMM Interior Point-Proximal Method of Multipliers
Input: A,Q,b,c, tol.
Parameters: 0 < omin < 0max < 0.5, Cn >0,0<yv4 <1, 0 <y, <1
Starting point: Set as in (18).
for (k=0,1,2,---) do
if ((J|Azg — blj2 < tol) A (|lc + Qzr, — ATyp, — zx||l2 < tol) A (ux < tol)) then
return (zy, yg, 2k)-
else
Choose 0}, € [0min; Tmax] and solve (20).
Choose step-length ay, as the largest a € (0, 1] such that pg(a) < (1 — 0.0la)pug and:

(xr + apAzy, Y +  Ayg, 21 + apAdzi) € Ny () (Chy Ak,

A T Az
where, ju(a) = (zg + apAzg)’ (2 + g, Zk)'
n

(L’T Zk
Set (Tht1,Yht15 2k1) = (@k + ATy, Y + AR Ayk, 21, + apdzy), ppr =
Bkt 7 Bht1 =
Let rp = Azjy1 — (b+ 5750), 7 = (e + =5750) + Qg — ATypp1 — 2p41.

if ((H("'pﬂ"d)”2 < CNEEL) A (Il(rpsra)lla < vap™itt )) then

(Cht1> Aet1) = (Tt 15 Yht1)-
else
(Cht15 A1) = (Chs Ak)-
end if
end if
end for

Notice, in Algorithm IP-PMM, that we force o to be less than 0.5. This value is set, without loss
of generality, for simplicity of exposition. Similarly, in the choice of the step-length, we require that
pg (@) < (1-0.01a)pug. The constant 0.01 is chosen for ease of presentation. It depends on the choice of
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the maximum value of 0. The constants Cy, v4, vu, are used in the definition of the neighbourhood
in (19). Their values can be considered to be arbitrary. The input tol, represents the error tolerance
(chosen by the user). The terminating conditions require the Euclidean norm of primal and dual
infeasibility, as well as complementarity, to be less than this tolerance. In such a case, we accept the
iterate as a solution triple. The estimates )\, ¢ are not updated if primal or dual infeasibility are not
both sufficiently decreased. In this case, we keep the estimates constant while continuing decreasing
the penalty parameter uj. Following the usual practice with proximal and augmented Lagrangian
methods, we accept a new estimate when the respective residual is sufficiently decreased. However,
the algorithm requires the evaluation of the semi-norm defined in (17), at every iteration. While this
is not practical, it can be achieved in polynomial time, with respect to the size of the problem. For
a detailed discussion on this, the reader is referred to [24, Section 4].

3 Convergence Analysis of IP-PMM

In this section we prove polynomial complexity and global convergence of Algorithm IP-PMM. The
proof follows by induction on the iterations of IP-PMM. That is, given an iterate (zy,yg,2r) at
an arbitrary iteration k, we prove that the next iterate belongs to the appropriate neighbourhood
required by the algorithm. In turn, this allows us to prove global and polynomial convergence of
IP-PMM. An outline of the proof can be briefly explained as follows:

e Initially, we present some technical results in Lemmas 1-3 which are required for the analysis
throughout this section.

e In turn, we prove boundedness of the iterates (zy, yg, 2x) of IP-PMM in Lemma 4. In particular
we show that |[(zg, vk, 2k)ll2 = O(n) and ||(zg, 2k)|[1 = O(n) for every k > 0.

e Then, we prove boundedness of the Newton direction computed at every IP-PMM iteration in
Lemma 5. More specifically, we prove that ||(Azy, Ayg, Azi)||2 = O(n®) for every k > 0.

e In Lemma 6 we prove the existence of a positive step-length & so that the new iterate of IP-PMM,
(Tk+1,Yk+1, 26+1), belongs to the updated neighbourhood Ny, (Ckt1, Agr1), for every k > 0. In
particular, we show that a > %, where k is a constant independent of n and m.

e Q-linear convergence of the barrier parameter py (to zero) is established in Theorem 1.

e The polynomial complexity of IP-PMM is then proved in Theorem 2, showing that it converges
to an e-accurate solution in at most O(n?|log (%) |) steps.

e Finally, global converge to an optimal solution of (P)-(D) is established in Theorem 3.

For the rest of this section, we will make use of the following two assumptions, which are commonly
employed when analyzing the complexity of an IPM.

Assumption 1 There exists an optimal solution (z*,y*,z*) for the primal-dual pair (P)-(D), such that
2" loo < C*, [y oo < C* and ||2%||co < C*, for some constant C* > 0, independent of n and m.

Assumption 2 The constraint matriz of (P) has full row rank, that is rank(A) = m. Furthermore, we
assume that there exist constants C}l > 0, Ci >0, Cg > 0 and Cr > 0, independent of n and m, such
that:

nmin(A) > C}ﬁa nmEX(A) < Civ VmaX(Q) < CQ7 ||(Cv b)”OO < Cr.
Note that the independence of the previous constants from the problem dimensions is assumed for
simplicity of exposition; this is a common practice when analyzing the complexity of interior point
methods. If these constants depend polynomially on n (or m), the analysis still holds by suitably

altering the worst-case polynomial bound for the number of iterations of the algorithm.
Let us now use the properties of the proximal operator defined in (11).

Lemma 1 Given Assumption 1, and for all X € R™, ( € R" and 0 < pu < oo, there exists a unique pair
(zy,yr), such that (xy,yr) = P(¢,\), and

”(I:ay:) - (x*,y*)lb < ”(C?)‘) - (m*vy*)lbv (21)

where P(-) is defined as in (11) and (x=*,y*) is the same as in Assumption 1.
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Proof We know that P(-,-) is single-valued and non-expansive ([32]), and hence there exists a unique
pair (zy,yr), such that (x;,y;) = P(¢,A), for all A, ¢ and 0 < p < co. Given the optimal triple of
Assumption 1, we can use the non-expansiveness of P(-) in (11), to show that:

[P A) = Pla™, g )2 = ll(a7, y7) — (=%, y7)ll2 < (€, A) = (@7, 57) 2,

where we used the fact that P(z*,y*) = (z*,y™), which follows directly from (9), as we can see that
(0,0) € Te(z*,y*). This completes the proof. O

Lemma 2 Given Assumptions 1, 2, there exists a triple (z7,,yr,, 2y, ), Satisfying:
Aac;ik + M(y:k —X)—b=0
* T % * *
—C— Qx’r'k + A y’r‘jc + Z’I‘k - /’L(x’l‘k - Ck) = 07 (22)
T
(m:k) (Z:k) =0,

with ||(x7, Yre» 2 ) |2 = O(V/n), for all A, € R™, ¢ € R™ produced by Algorithm IP-PMM, and any
w € [0,00). Moreover, we have that ||((k, Ag)|l2 = O(v/n), for all k > 0.

Proof We prove the claim by induction on the iterates, & > 0, of Algorithm IP-PMM. At iteration
k = 0, we have that Ao = yo and (o = x¢. But from the construction of the starting point in (18), we
know that ||(zo,y0)ll2 = O(v/n). Hence, ||(Co, Mo)|l2 = O(yv/n) (assuming that n > m). From Lemma 1,
we know that there exists a unique pair (zy,,y»,) such that:

(g, Yry) = Po(C0sX0), and  |[(zry,yr,) — (27,472 < [[(Cos Xo) — (", 472

Using the triangular inequality, and combining the latter inequality with our previous observations,
as well as Assumption 1, yields that ||(z7,,yr)ll2 = O(v/n). From the definition of the operator in
(12), we know that:

—C— Qx:g + ATy:o - ,LL(:E:O - Ck) € a5+ (x:0)7
Ax;k‘o + M(y:(] - >‘]€) -b =0,

where 8(64(-)) is the sub-differential of the indicator function defined in (10). Hence, we know that
there must exist —z;, € 334 (z5,) (and hence, z;, >0, (z},)T (2,) = 0), such that:

zy =+ Quyy — ATyr + u(zh, — G, (25) " (25y) =0, |25, ll2 = O(v/n),

where ||z5, ||2 = O(y/n) follows from Assumption 2, combined with ||(zo,y0)|l2 = O(v/n).
Let us now assume that at some iteration k of Algorithm IP-PMM, we have ||((x, Ak )ll2 = O(v/n).
There are two cases for the subsequent iteration:

1. The proximal estimates are updated, that is (Cx41,Ak+1) = (Tg+1, Ykr1), OF
2. the proximal estimates stay the same, i.e. (i1, k41) = (Crs Ak)-

Case 1. We know by construction that this case can only occur if the following condition is
satisfied: .
k41
I(rp,ra)ll2 < Cn =2,
o

where rp, 74 are defined in Algorithm IP-PMM. However, from the neighbourhood conditions in (19),
we know that:

Mk
l (Tp + Hk+1(yk+1 = A)sra + Mk+1(55k+1 - Ck)) ll2 < CNﬁ-

Combining the last two inequalities by applying the triangular inequality, and using the inductive

hypothesis (|[(Ag,Ce)ll2 = O(v/n)), yields that [|(zx41,ye41)ll2 = O(v/n). Hence, [[(Coy1, Aer1)ll2 =
O(y/n). Then, we can invoke Lemma 1, with A = Agy 1, ¢ = (g1 and g = pgq, which gives that:

(s Uresn) = (&0 ) 2 < N(Chg1s Arr1) — (27,972

A simple manipulation yields that ||(z7, ., yr.,.)ll2 = O(v/n). As before, we use (12) alongside As-
sumption 2 to show the existence of —z;, € 994 (7, ), such that the triple (z7, ., 95 ., 25 ,)
satisfies (22) with ||z, , [l = O(v/n).

Case 2. In this case, we have (Ct11, g+1) = (Ck» Ak), and hence the inductive hypothesis gives
us directly that: ||(Cgr1,Aer1)|l2 = O(v/n). The same reasoning as before implies the existence of a

triple (27, Yr.1» 2,0, ) Satisfying (22), with [|(z7, ., 5., 200, ) 2 = O(V/n). O
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Lemma 3 Given Assumptions 1, 2, A\, and (i produced at an arbitrary iteration k > 0 of Algorithm 1P-
PMM and any p € [0,00), there exists a triple (Z,7, Z) which satisfies the following system of equations:

AZ + p§ = b+ b+ py + by,
Qi+ AT+ E - pi = c+— ply + &, (23)
Xz = Oen,

for some arbitrary 0 > 0 (0 = O(1)), with (Z,2) > &(en,en) (€= 6O(1)) and ||(Z,9, Z)|2 = O(v/n), where
bi, Cr are defined in (19), while b, € are defined with the starting point in (18).

Proof Let k > 0 denote an arbitrary iteration of Algorithm IP-PMM. Let also b, ¢ as defined in (18),
and by, ¢y, as defined in the neighbourhood conditions in (19). Given an arbitrary positive constant
0 > 0, we consider the following barrier primal-dual pair:

n
ming ((c+c+ &)+ %xTQx —0> Ina), st. Av=b+b+by, (24)
j=1

_ 1 - , iy
maxg,y,z ((b+b+b) "y — §a:TQx+6?Zlnz]), st. —Qr+ATy+z=c+c+a,. (25)
j=1

Let us now define the following triple:

(&,9,2) = arg (3101211) {I(,2)ll2 : Az = by, —Qu+ ATy + 2 =5}

From the neighbourhood conditions (19), we know that ||(by,é)||a < v.4p, and from the definition
of the semi-norm in (17), we have that: ||(Z,2)||2 < yap. Using (17) alongside Assumption 2, we can
also show that [|g]l2 = ©(||(%, 2)||2). On the other hand, from the definition of the starting point, we
have that: (zo,20) = p(en,en). By defining the following auxiliary point:

(z,9,2) = (20,0, 20) + (2,9, 2),

we have that (Z,z) > (1 — y4)p(en, en). By construction, the triple (z,7, z) is a feasible solution for
the primal-dual pair in (24)-(25), giving bounded primal and dual objective values, respectively.

Using our previous observations, alongside the fact that rank(A) = m (Assumption 2), we can
confirm that there must exist a large constant M > 0, and a triple (z%,y%, 25) solving (24)-(25), such
that [|(z3, 22) oo < M = (&%, 42, 2512 = O(v).

Let us now apply the proximal method of multipliers to (24)-(25), given the estimates (g, A\x. We
should note at this point, that the proximal operator used here is different from that in (11), since it
is based on a different maximal monotone operator from that in (9). In particular, we associate the
following maximal monotone operator to (24)-(25):

Tr(z,y) ={(uv):v=Qz+ (c+c+¢) — ATy —0X Yen, u= Az — (b+b+by)},
As before, the proximal operator is defined as P := (Imin + Tz) ', and is single-valued and non-
expansive. We let any u € [0,00) and define the following penalty function:
5 - 1
L6025y Ag) = (c+c+ ck)Tx + ﬁxTQ;r: +
1 2 1 T 72 T I, 7 = j
ghlle = GllE + 5ollAz — (b4 b+ )3 — (u) (Az— (b+b+1b) -0 Ina’.
j=1

By defining the variables y = \j, — %(A:E —(b+b+by)) and z = X Le,, we can see that the optimality
conditions of this PMM sub-problem are exactly those stated in (23). Equivalently, we can find a
pair (,9) such that (Z,7) = P(Cx, Ar) and set Z = 60X 'e,. Then, we can use the non-expansiveness

of P, as in Lemma 1, to obtain:

1@, 9) = (25, y5)ll2 < 1Sk ) = (25, 55) |2

But we know, from Lemma 2, that [|((r, Ax)ll2 = O(v/n), for all k& > 0. Combining this with our
previous observations yields that ||(Z,7)|2 = O(v/n). Setting 2 = 6X e, gives a triple (Z,7,2)
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that satisfies (23), while ||(,9, Z)||2 = O(v/n). To conclude the proof, let us notice that the value of
L,,,0(2; Cr, A) will grow unbounded as 2 — 0 or  — oo. Hence, there must exist a constant M > 0,
such that the minimizer of this function must satisfy L <% <M, forall j€{1,...,n}. The relation

X% = fe,, then implies that = < ) < OM. Hence (7, z) > ¢(en,en), where € > 0 and ¢ = O(1). O
In the following Lemma, we derive boundedness of the iterates of Algorithm IP-PMM.

Lemma 4 Given Assumptions 1 and 2, the iterates (zy, yx, 2k) produced by Algorithm IP-PMM, for all
k >0, are such that:
@k, zi)lln = O(n), [[(zk, vk, 2k)ll2 = O(n).

Proof Let an iterate (zk,yk,2k) € Nuy (Ck, Ak ), produced by Algorithm IP-PMM during an arbitrary
iteration k > 0, be given. Firstly, we invoke Lemma 3, from which we have a triple (z, ¢, 2) satisfying
(23), for p = py. Similarly, by invoking Lemma 2, we know that there exists a triple (z7,,yr,, 21, )
satisfying (22), with p = pg. Consider the following auxiliary point:

Hhy o« [k fi; ~ [k =
<( —%)fcrﬁr%w—x , (1—*)yrk+%y—yk7 (1_7) +%Z_Zk)- (26)

Using (26) and (22)-(23) (for u = ), one can observe that:
A= BEyer PR g oy (1 - @)ym + “—’“y i) =
120] MO
(1= EByAny, + i) + B2 (A% + i) — Ay, — iy =
o Ho
(1- %)(b+ﬂk)\k) + &(bﬂmk +b+Db) — Axy, — pryr =
b+ pk Ak + (b+ b) — Awy, — pyy, = 0,

where the last equality follows from the definition of the neighbourhood Ny, (¢, Ax). Similarly:

P ~ T [k P ~
—(Q+Mkfn)((1—%) :’“+uo —xp) + A ((1—%)yik+%y—yk)+((1— AP foz—zk) 0.

By combining the previous two relations, we have:

(1= Th)ar, + 288 — o) (1= TE)=7, + %z ~ ) =
(1= BBy, + 088 — o) (@ + uaD) (1= )z, + TRE — ) + (27)

My % P ~ Mk Nk
S T Ekyyr 4+ ER 0.
e (( Mo)ym o EE G — ) (1 - Mo)ym, 0 U—yr) >

From (27), it can be seen that:
Bl x| Mk T By % | Bk T
11—z, +—2) 2+ (1 — =)z, + —2) a2, <
(( NO)Tk o ) a4 (( uo)” o ) wp <
i\ x| Bk \T By x| Pk = T
1 - ")z, +—2 1—")z., +—=2)+ 21 21.
(( MO) Tk 2o ) (( MO) Tk 40 ) k ~k
However, from Lemmas 2 and 3, we have that: (z,2) > £(en, en), for some positive constant ¢ = O(1),
while ||(z5,, 25, )|l2 = O(v/n), and, ||(Z, 2)|]2 = O(v/n). Furthermore, by definition we have that nu, =
xfzk. By combining all the previous, we obtain:
%(e%k +elz) <
(1= EB)ar, + L) T+ (1= Eh)r, + Ty Ty
Ho Ho Ho

(1= Dby, + L) (1 - ”—’wzm + ) + o 2

IA

(28)

103 My, s \T~ , Mk Mo \<T % Mk \2-T~ , T
—=1-")zr) 24+ —(1 - + (=)°2" z+ z, 2z, = O(ugn),
B (= B 07, )T 4 21— BE)T5, o (AL )23T 2 4 0l = O(un)

where we used (22) ((z5,)7 (25,) = 0). Hence, (28) implies that:

[(zk; 21)[[1 = O(n).
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From equivalence of norms, we have that ||(zx, z)|l2 < ||(zk, 2&)|1. Finally, from the neighbourhood
conditions we know that:

c+ Qup — ATy — 21, + pg (g, — G) + %(Ek +¢) =0.

All terms above (except for yi) have a 2-norm that is O(n) (note that ||(¢,b)||2 = O(v/n) using
Assumption 2 and the definition in (18)). Hence, using again Assumption 2 yields that ||yx|2 = O(n),
and completes the proof. O

As in a typical IPM convergence analysis, we proceed by bounding some components of the scaled
Newton direction. The proof of that uses similar arguments to those presented in [36, Lemma 6.5].
Combining this result with Assumption 2, allows us to bound also the unscaled Newton direction.

Lemma 5 Given Assumptions 1 and 2, and the Newton direction (Azy, Ay, Azy) obtained by solving
system (20) during an arbitrary iteration k > 0 of Algorithm IP-PMM, we have that:

— 1 1
Dt Azl = O(n?p?), ||DrAzll2 = O(n®u?), [[(Ak, Ayg, Azp)|l2 = O(n®),
with D} == X, Z; "
Proof Consider an arbitrary iteration k of Algorithm IP-PMM. We invoke Lemmas 2, 3, for u = o pug.

That is, there exists a triple (z7,,vr,, 2, ) satisfying (22), and a triple (Z,y, ) satisfying (23), for
1= oppg. Using the centering parameter o, we define the following vectors:

¢ = —(aki—(l—ak)(xk—cjk—l-%(i:—m?k))), b= —(aku—bo—l-(l—ak)(yk—)\k—l—Z—];(g]—y:,c))), (29)

where b, ¢, po are defined in (18). Using Lemmas 2, 3, 4, and Assumption 2, we know that ||(¢,b)||2 =
O(n). Then, by applying again Assumption 2, we know that there must exist a vector Z such that:
AZ =10, ||Z]]2 = O(n), and by setting z = ¢ + QT + pZ, we have that ||| = O(n) and:

Az =b, —Qi+ % — pupi = ¢. (30)

Using (z7,, Yry.» 2rv ), (£, 7, 2), as well as the triple (&,0, z), where (, 2) is defined in (30), we can
define the following auxiliary triple:

(i'ygvg) = (A.’L'k,Ayk,AZk)—F %(ivy72 %(xik7y:kvz:k)+ﬂk(ivoaé) (31)
Using (31), (29), (22)-(23) (with p = ogpy), and the second block equation of (20), we have:
AT+ = (AAwy -+ Ayr) + TE (AT + ) — (A, + r,) + A

= (b+ Uk%B — Axy, — o (Y — M) + %((Ai + i) — (Azy, + pryr, )

- uk(akuio (L= =) = 22 (1 = o)~ v7,)

= (b+ Uk%l_) — Azy, — o (ye — M) + %(54- ok + b+ br)

1k b
— BE A+ b) — o = —A
1o (TR +) Mk(akﬂo (1= or) (= Ar))
:b+%(5+ék)fAmkfuk(yk*Ak)
-0,

where the last equation follows from the neighbourhood conditions (i.e. (zg,yr,2k) € Nuy (Ck, Ak))-
Similarly, we can show that:
—Qz+ ATy +z -z =0.
The previous two equalities imply that:

2= (Qz—ATy+ ) =7 (Q+ )T+ my" § > 0. (32)
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On the other hand, using the last block equation of the Newton system (20), we have:

Zyx + Xpz = —XpZyen + oppigen + %Zk(i’ —ap,) + %Xk(f —zr) 2+ pp X2
0 0

Let W, = (Xka)%. By multiplying both sides of the previous equation by Wk_l, we get:
Dy '+ Dz = =Wy (X Zyen — oppnen) + %(D;l(ﬁx:‘-k>+Dk(z—za)) + i (Dy; Vi + Dy2). (33)

But, from (32), we know that z’ z > 0 and hence:
1D 2 + Dyzl[3 > || Dy 23 + (| Dy2l13-

Combining (33) with the previous inequality, gives:

| D @l|5 + |1 Dx 215 < {|‘W];1H2HXkaen — O pken|l2+
i 2

k —1/~ * ~ * —14 2
%(I\Dk @ —ar )2 + 1Dk (Z — 25)ll2) + i (1D " 2ll2 + \|Dk2||2)} :

We isolate one of the two terms of the left hand side of the previous inequality, take square roots
on both sides, use (31) and apply the triangular inequality to it, to obtain:

—1 —1
|1Dy, " Azl < Wy, "2l Xk Zren — oppigenl2

Lo (x 5 -1, . 34
+ %(2|\Dk Y@ —ah)ll2 + 1Dk (2 — 25)12) + wx (211D, 212 + | Dx2]2). (34)

We now proceed to bounding the terms in the right hand side of (34). Firstly, notice from the
neighbourhood conditions (19) that v, u < z},2;. This in turn implies that:

1
= 1 -
(Ypr)2

Wy, *ll2 = max

NI

(z}.2,)
On the other hand, we have that:
T
| Xk Zren — opprenl3 = | X Zrenl|® — 20kmpai 2 + ohpin
< | XiZpenlT — 2041k 2 + oipin
2 2 2
= (ukn)” — 20, pkn + oppin
2 2
< pgn”.
Hence, combining the previous two relations yields:
-1 n 1 1
Wy 2l Xk Zken — oxpgenllz < —vug = O(nu?).
Vi
We proceed by bounding ||D,;1H2. For that, using Lemma 4, we have:
-1 iy —1 —1 -1 —1 n
195l = max (DF) ™ = 155 el = W3 Zuenl < W5 ool =0 (5 ).
P
Similarly, we have that:
n
Dl =0 ().
P
Hence, using the previous bounds, as well as Lemmas 2, 3, we obtain:

[ | =1~ [ . AP 5 3
QEHD;C (x—wik)llfr%\|Dk(z—2?k)|l2 < 2%(||Dk 2 + [ Dill2) max{||Z — 27, [[2, 12 — 27, l2}

1

= O(n*nf),

and

1
i (21D5 &2 + 1 Dk2l12) < 2 (1D Iz + [ Dgll2) max{ ||z, |2l|2} = O(n®uf).
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Combining all the previous bounds yields the claimed bound for HDk_lAmk |l2. One can bound || Dy Azg||2
in the same way. The latter is omitted for ease of presentation.
Finally, we have that:

| Azyll2 = | Dy Dy, t Azyl|2 < || Dyll2]| Dyt Azyll2 = O(n®).

Similarly, we can show that [|Azg|l2 = O(n?). From the first block equation of the Newton system in
(20), alongside Assumption 2, we can show that ||Ayx|l2 = O(n?), which completes the proof. O

We are now able to prove that at every iteration of Algorithm IP-PMM, there exists a step-length
ay, > 0, using which, the new iterate satisfies the conditions required by the algorithm.

Lemma 6 Given Assumptions 1 and 2, there exists a step-length & € (0, 1), such that for all a € [0, a]
and for all iterations k > 0 of Algorithm IP-PMM, the following relations hold:

(x5, + aday) " (2, + adzy) > (1 - a(l = B1))zf 2, (35)
(zh + adzl) (2} + aAzl) > %(zk + adzy) (2, + adz), foralic{1,...,n}, (36)
(zk + adzy) " (2 + adz) < (1 - a(l - B2)), 21, (37)

where, without loss of generality, 1 = 23= and B2 = 0.99. Moreover, & > % for all k > 0, where k > 0
is independent of n and m, and if (x, Y, zk) € Nuy (ks Ak), then letting:

T
T41%k+1

, for all a € (0,a]
n

(Tht 1> Ukt 15 2ht1) = (T + @y, Y + @y, 21, + Azy), pryr =

gives (Te11,Yka1, 2k+1) € Nupsr (Cor1, Akt1), where A, (g are updated as in Algorithm IP-PMM.

Proof In order to prove the first three inequalities, we follow the developments in [36, Chapter 6,
Lemma 6.7]. From Lemma 5, we have that there exists a constant Ca > 0, such that:

(Axy)" Az, = (Dy; ' Axy,) " (D Azy) < D), Axy|l2]| Dy Azg |2 < Can’uy,.

Similarly, it is easy to see that: o
| Azl Azp| < CEn* .

On the other hand, by summing over all n components of the last block equation of the Newton
system (20), we have:

o Ay, + o, Azy = ey (2, Awy, + X Azg) = ey (—XpZien + oppiren) = (o — Dag z,  (38)
while the components of the last block equation of the Newton system (20) can be written as:
G AT}, + T Az = )2, + Oty (39)
We proceed by proving (35). Using (38), we have:

(wk + adz) T (2, + adz,) — (1= a(l = B1))zf 2, =

atz + alog — 1):1,{% +a?Axt Az, — (1- a)x%zk —aPrar 2, >

V

T Omi
alog — B1)ak 2k — o CAn g > a(%)nﬂk —o?Chn’ 1,

where we set (without loss of generality) 1 = “#i». The most-right hand side of the previous in-
equality will be non-negative for every a satisfying:

Omin
a< .
= 2 .3
2C0%n

In order to prove (36), we will use (39) and the fact that from the neighbourhood conditions we
have that x},z;, > yupp. In particular, we obtain:

(), + aday) (2 + adzy) > (1 - a)apzy + aopuy, — o’ Chn'py,

2~2 4
> (1 — @)pk + aogpy — a”CaAn pg.



16 Spyridon Pougkakiotis, Jacek Gondzio

By combining all the previous, we get:

\%

(wh + @Aw}) (2 + adz) = L (ap + adw) (2 +adzy)

\

aoy(1 = yu)pue — (1 + %)QZCin"‘uk
aomin(1 = ), — 20°CAn 1.
In turn, the most-right hand side of the previous relation will be non-negative for every a satisfying:

< Jmin(l - ’Y,u)

=T 02t

Finally, to prove (37), we set (without loss of generality) S2 = 0.99. We know, from Algorithm
IP-PMM, that omax < 0.5. With the previous two remarks in mind, we have:

%(wk + adz,) T (2, + aAz) — (1 = 0.01a)u,

2

IN

TL4
i — (1 —0.01a) pg,

IN

(1 - a)pp + aopuy + o

02 4
—0.99a1; + 0505 + OPAT” Ly =

2 C’in4

—0.49apu; + « -

The last term will be non-positive for every « satisfying:

a< — .
= ~2 3
Can

By combining all the previous bounds on the step-length, we have that (35)-(37) will hold for
every a € (0,a™), where:

* : Omin Umin(l - '}’y,) 0.49
= 1. 40
@ T { 20203’ 20%n* ' CZnd’ (40)

Next, we would like to find the maximum & € (0, @], such that:

(zr (@), yr(@), 2 (@) € Ny (@) (Crs Ar), for all a € (0,a],

2 ()T 2k ()
n

where py(a) = and:

(zr(a), yp(@), 21(@) = (zh + alay, yp + aAyy, 21, + alzy).

Let:

7p(a) = Az (@) + () (ye(@) = M) = (b+ “’27(00‘)5),

and

Fa(e) = —Qui() + ATyy(0) + 2(0) — (@) (@) — G) — (c+ ”’;fj) ).

In other words, we need to find the maximum & € (0, a*], such that:

o). Fate)l < O (@) Fa(@)lla < 140, orantae @aal ()

If the latter two conditions hold, then (zj (), yr(), 2k () € Ny, (a)(Crs Ak), for all a € (0,a]. Then,
if Algorithm IP-PMM updates (;, A, it does so only when similar conditions (as in (41)) hold for
the new parameters. If the parameters are not updated, then the new iterate lies in the desired
neighbourhood because of (41), alongside (35)-(37).
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We start by rearranging 7p(a). Specifically, we have that:

~ ZA:L'Z;AZIC B
p(e) = Az + aday) + (w4 aloy — Dk +a 7) ((yr + adyg — Ag) — %) —b
= (Azp + e (yr — M) —b— % b) + a(AAzy, + pupAy) +
AzT Az b
+ (a(op — Vg + QQka) ((yk — A + alyy) — %)

. ; .
= %bk + a(bf Axy, — Ukﬂk((yk —Ag) — %) + Hk((yk — ) — %) _

Azi A 5
PRI (g — A+ ady) — ),

— (g — M) — ;Tbo)) + (elog = D + a

where we used that (o) = (g + o) — 1) g + azM) which can be derived from (38), as well

as the neighbourhood conditions (19), and the second block equation of the Newton system (20). By
using again the neighbourhood conditions, and then by deleting the opposite terms in the previous
equation, we obtain:

- ~ Azt Az b
() = (1 — @) 2y + a®(op — Vg Ayg + > ZEZ20 (g A+ adyy — —). (42)
Ho n Ho
Similarly, we can show that:
Azt A c
Fae) = (1= ) The, — a®(op = DAy — o =EZH (0 = Gotadep +0). (43)

Define the following two quantities:

b ¢
€2 1= gl (Ayk, Azy) |2 + CAN® g, (H(yk — e 2 — Ci)ll2 + " [ (Ayg, Azy)[|2 + H (*0 ;)

)

€4 = pgll(Ayy, Azg)l|la + Can’ug (||(yk — Mo 2 — C)lla + @ [(Ayr, Az |4 + H <uo uo)

(44)

where o is given by (40). Using the definition of the starting point in (18), as well as results in
Lemmas 4, 5, we can observe that £ = O(n*jy,). On the other hand, using Assumption 2, we know
that for every pair (ri,r2) € R™*", if ||(r1,r2)ll2 = O(f(n)), where f(-) is a positive polynomial
function of n, then ||(r1,72)||4 = ©(f(n)). In other words, we have that £4 = O(n*uy). Using the
quantities in (44), equations (42), (43), as well as the neighbourhood conditions, we have that:

17p(a), Fala)ll2 < (1 —a)CN —I—a p€2,
[7p(c), Fala)lla < (1 - G)VAP% + ot
for all @ € (0,a*], where a* is given by (40). On the other hand, we know from (35), that:

pi(a) > (1 —a(l — B1))us, for all a € (0,a"].

By combining the last two inequalities, we get that:

17 (@), Fa(@)]l2 < “L@‘)ON, for all a € (O,min {a”, PLON }]
Mo

2410
Similarly,
[7p(cx), Fala)||la < ML( )’y_Ap, for all o € (0, min{a*,%}}
Hence, we have that:
o min o 0 ) 0

where 81 = 23, Since a = Q(nl ) we know that there must exist a constant x > 0, independent of
n, m and of the iteration k, such that & > 7% for all k£ > 0, and this completes the proof. O
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The following Theorem summarizes our results.

Theorem 1 Given Assumptions 1, 2, the sequence {u} generated by Algorithm IP-PMM converges Q-
linearly to zero, and the sequences of regularized residual norms

{|| A2k + o (yk — Xe) — b — %BHQ} and {|| — Qi + ATy + 2 — p (g, — ) — ¢ — I:TISEHQ}
converge R-linearly to zero.

Proof From (37) we have that:
prg1 < (1= 0.01ag) g,

while, from (45), we know that for all k¥ > 0, there exists a > % such that ap > a. Hence, we can
easily see that pi — 0. On the other hand, from the neighbourhood conditions, we know that for all
k>0:

|| Az + (i — M) — b — 20, < OnEE
1o Ho

and
=23

Ho
This completes the proof. O

| — Qs + ATy + 2 — (e — Q) — e — %EH2 <Cn

Theorem 2 Let € € (0,1) be a given error tolerance. Choose a starting point for Algorithm IP-PMM as
in (18), such that po < 6% for some positive constants C, w. Given Assumptions 1 and 2, there exists an
index K with:

1
K = O(n*|log (E)D
such that the iterates {wy} = {(mg, y,{, z;{)T} generated from Algorithm IP-PMM satisfy:
e < e, for all k> K.

Proof The proof follows the developments in [36,37] and is only provided here for completeness.
Without loss of generality, we can chose omax < 0.5 and then from Lemma 6, we know that there is

a constant  independent of n such that: a > %, where a is the worst-case step-length. Given the

latter, we know that the new iterate lies in the neighbourhood N, ((x+1, Ak+1) defined in (19). We
also know, from (37), that:

fre1 < (1—0.01a)u < (1 - 0.01%)% k=0,1,2,...
By taking logarithms on both sides in the previous inequality, we get:

K
log (1) < log(1 — nj) + log (),

where & = 0.01%. By applying repeatedly the previous formula, and using the fact that uo < 6%, we
have:

K K 1
log (i) < klog(1 — -7) + log(s0) < klog(1 — 7) +wlog(=) +log(C).

We use the fact that log(1 + 3) < 3, for all 8> —1 to obtain:
R 1
log(pg) < k(=—7) +wlog(-) +log(C).
Hence, convergence is attained if:
R 1
k(fﬁ) —l—wlog(;) + log(C) < log(e).

The latter holds for all k satisfying:

31\3%

1
k> K =—((1+w)log(=) +log(C)),
which completes the proof. O

Finally, we present the global convergence guarantee of Algorithm IP-PMM.
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Theorem 3 Suppose that Algorithm IP-PMM terminates when a limit point is reached. Then, if As-
sumptions 1 and 2 hold, every limit point of {(x,yx,2)} determines a primal-dual solution of the non-
reqularized pair (P)-(D).

Proof From Theorem 1, we know that {u;} — 0, and hence, there exists a sub-sequence K C N, such
that:

{Axk +uk(yk —)\k) —b- %B}Ki — 0, { — Quxy, +AT'£/k + 2 _Nk(mk _Ck) —Cc— %E}}C — 0.

However, since Assumptions 1 and 2 hold, we know from Lemma 4 that {(zy,yx, zx)} is a bounded
sequence. Hence, we obtain that:

{Az, b} =0, { = Qup+ ATyp + 2, — c} . — 0.

One can readily observe that the limit point of the algorithm satisfies the conditions given in (2),
O

T
T 2k

since py, = —£

Remark 1 Let us notice that the above analysis required Assumption 2, and hence that rank(A4) = m.
However, one motivation for using regularization is that the resulting algorithm is able to solve rank
deficient problems. While the complexity result would not hold in this case, we are able to perform
an analysis following exactly the developments in [12], which would guarantee the global convergence
of IP-PMM, given certain assumptions (see [12]). The latter is omitted for brevity of presentation.

4 Infeasible Problems

Let us now drop Assumptions 1, 2, in order to analyze the behaviour of the algorithm in the case
where an infeasible problem is tackled. Let us employ the following two premises:

Premise 1 During the iterations of Algorithm IP-PMM, the sequences {|lyr — Agll2} and {||lzx — Ckll2},
remain bounded.

Premise 2 There does not exist a primal-dual triple, satisfying the KKT conditions for the primal-dual
pair (P)-(D).

The following analysis is based on the developments in [2] and [12]. However, in these papers such
an analysis is proposed in order to derive convergence of an IPM, while here, we use it as a tool in
order to construct a reliable and implementable infeasibility detection mechanism. In what follows,
we show that Premises 1 and 2 are contradictory. In other words, if Premise 2 holds (which means
that our problem is infeasible), then we will show that Premise 1 cannot hold, and hence the negation
of Premise 1 is a necessary condition for infeasibility.

Lemma 7 Given Premise 1, and by assuming that xfzk > €, for some € > 0, for all iterations k of
Algorithm IP-PMM, the Newton direction produced by (20) is uniformly bounded by a constant dependent
only on n.

Proof Let us use a variation of Theorem 1 given in [2]. This theorem states that if the following
conditions are satisfied,

1. Wi > O7 o
2. there exists € > 0 : z},z}, > ¢, for all i = {1,2,...,n},and for all & > 0,
3. and the matrix Hy = pupl + Q + X,;le + H%ATA is positive definite,

then the Jacobian matrix in (20) is non-singular and has a uniformly bounded inverse. Note that
(1.), (3.) are trivial to verify, based on the our assumption that :vfzk = nug > e. Condition (2.)
follows since we know that our iterates lie in N, ((k, \x), while we have xzzk > ¢, by assumption.
Indeed, from the neighbourhood conditions (19), we have that xiz}c > %mfzk Hence, there exists
€= % > 0 such that ar:}cz,’C > ¢ forall k>0, foralli={1,--- ,n}.

Finally, we have to show that the right hand side of (20) is uniformly bounded. To that end, we
bound the right-hand side of the second block equation of (20) as follows:

<
2

O b b b
HACEk + ot (e — k) —b— Thllkp 1 k(e — A — —) = e(ye — A — —)
o 120] 120]

b
Y — A — —

Mk 5
bk ll2 + 1k
10 10

5
2
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where we used the neighbourhood conditions (19). Boundedness follows from Premise 1. A similar
reasoning applies for bounding the right-hand side of the first block equation, while the right-hand
side of the third block equation is bounded directly from the neighbourhood conditions. Combining
the previous completes the proof. O

In the following Lemma, we prove by contradiction that the parameter pj of Algorithm IP-PMM
converges to zero, given that Premise 1 holds. The proof is based on the developments in [12,20] and
is only partially given here, for ease of presentation.

Lemma 8 Given Premise 1, and a sequence (xy, Y, zk) € Nuw (Cky k) produced by Algorithm IP-PMM,
the sequence {ug} converges to zero.

Proof Assume, by virtue of contradiction, that u; > e, for all k£ > 0. Then, we know that the New-
ton direction obtained by the algorithm at every iteration, after solving (20), will be uniformly
bounded by a constant dependent only on n, that is, there exists a positive constant CT, such that
(Azy, Ay, Azp)|l2 < CT. As in Lemma 6, we define:

(@) = Awg(0) + (@) (@) — M) — b — 225,
Ho

and
. a) _
Fale) = ~Qun(a) + A (@) + (@) — () ar(a) - G) — e — LY
for which we know that equalities (42) and (43) hold, respectively. Take any k > 0 and define the

following functions:

(@) = (o + aday)” (2 + adz) — (1 - a(l - Z50))af 2,

fﬁ(a) = (:L';C + an}C)(z,Z + aAZIZf) —upr(a), i=1,-,n,
f3(@) = (1= 0.01a)a) 2, — (xr(@)” (21(a)),

ga(e) = ey (), Fafa))
0

where iy (o) = (DA TEREAZ) (4 (), g (0), 24(a)) = (o + @y, yi + 0 Ay, 2 + adz,). We
would like to show that there exists a® > 0, such that:

fi(a) >0, fi(a) >0, foralli=1,....n, fa(a) >0, g2(a) >0, for all a € (0,a].

These conditions model the requirement that the next iteration of Algorithm IP-PMM must lie in
the updated neighbourhood: N, ., (k, Ax). Note that Algorithm IP-PMM updates the parameters
Ak, C only if the selected new iterate belongs to the new neighbourhood, defined using the updated
parameters. Hence, it suffices to show that (zxi1,yk+1,2k+1) € Nupyr (Ces M) It is important to
observe that we do not require that the scaled infeasibilities are bounded with respect to the semi-
norm defined in (17). This is because the aforementioned norm requires that rank(A) = m. In other
words, we are using a slightly different neighbourhood, and that does not affect the global convergence
of the method (but only its complexity).

Proving the existence of o > 0, such that each of the aforementioned functions is positive,
follows exactly the developments in Lemma 6, with the only difference being that the bounds on the
directions are not explicitly specified in this case. Using the same methodology as in Lemma 6, while
keeping in mind our assumption, namely :vgzk > ¢, and hence x}cz,fv. > €, we can show that:

N . Omin€ (1 —vu)omin€ 0.49¢ ominCne
= 1 46
“ mm{ (CHZ T 2(0T2 2(CT2 2u0(Er) | (46)

where & is a bounded constant dependent on CT, and defined as in (44). However, using the inequality:
prr1 < (1—0.01a)ug, for all a € [0,a],

we get that ui — 0, which contradicts our assumption that ui > €, for all ¥ > 0, and completes the
proof. O

Finally, using the following Theorem, we derive a necessary condition for infeasibility.
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Theorem 4 Given Premise 2, i.e. there does not exist a KKT triple for the pair (P)-(D), then Premise
1 fails to hold.

Proof By virtue of contradiction, let Premise 1 hold. In Lemma 8, we proved that given Premise 1,
Algorithm ITP-PMM produces iterates that belong to the neighbourhood (19) and p; — 0. But from
the neighbourhood conditions we can observe that:

| Ay, + s (yr, — M) — b — ERBllo < O EE,
1o 10

and
| = Qur + ATyp + 21, — (g — G) — e — EEg)y < O EE.
Ho ©o

Hence, we can choose a sub-sequence K C N, for which:
A — M) —b— EEp d{- AT - — ) —c— kg
{Azp + pr (e — M) — b o bl — 0, and {-Qxp + A" yp + 2 — pr (2 — () — ¢ o ctx — 0.
But since |lyx — Ak|l2 and ||z — (k||2 are bounded, while py — 0, we have that:
{Azy — bl = 0, {c+Quy — ATyp — 2} — 0, and {xf 2} — 0.

This contradicts Premise 2, i.e. that the pair (P)-(D) does not have a KKT triple, and completes the
proof. O

In the previous Theorem, we proved that Premise 1 is a necessary condition for infeasibility,
since otherwise, we arrive at a contradiction. Nevertheless, this does not mean that the condition is
also sufficient. In order to obtain a more reliable test for infeasibility, that uses the previous result,
we will have to use the properties of Algorithm IP-PMM. In particular, we can notice that if the
primal-dual problem is infeasible, then the PMM sub-problem will stop being updated after a finite
number of iterations. In that case, we know from Theorem 4 that the sequence ||(zg — Ck, Yy — Ax)ll2
will grow unbounded. Hence, we can define a maximum number of iterations per PMM sub-problem,
say KT >0, as well as a very large constant CT > 0. Then, if (zg — Ckr Yk — Aie)ll2 > ctand k> KT,
the algorithm is terminated. The specific choices for these constants will be given in the next section.

5 Computational Experience

In this section, we provide some implementation details and present computational results of the

method, over a set of small to large scale linear and convex quadratic programming problems. The

code was written in MATLAB and can be found in the following link:
https://www.maths.ed.ac.uk/ERGO /software.html (source link).

5.1 Implementation Details

Our implementation deviates from the theory, in order to gain some additional control, as well
as computational efficiency. Nevertheless, the theory has served as a guideline to tune the code
reliably. There are two major differences between the practical implementation of IP-PMM and its
theoretical algorithmic counterpart. Firstly, our implementation uses different penalty parameters
for the proximal terms and the logarithmic barrier term. In particular, we define a primal proximal
penalty p, a dual proximal penalty § and the barrier parameter p. Using the previous, the PMM
Lagrangian function in (14), at an arbitrary iteration k of the algorithm, becomes:

PMM v, 17 T 1 2, Pk 2
Lo (@5 \i) = ¢+ 57 Qr — N (Az —b) + E”Am —bll2 + 5”75 - Cll2,
and (15) is altered similarly. The second difference lies in the fact that we do not require the iterates
of the method to lie in the neighbourhood defined in (19) in order to gain efficiency. In what follows,
we provide further details concerning our implementation choices.


https://github.com/spougkakiotis/IP_PMM
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5.1.1 Free Variables
The method takes as input problems in the following form:
ming (ch + %xTQx), s.t. Az = b, ! >0, zF free,

where I = {1,--- ,n} \ F is the set of indices indicating the non-negative variables. In particular, if a
problem instance has only free variables, no logarithmic barrier is employed and the method reduces
to a standard proximal method of multipliers. Of course in this case, the derived complexity result
does not hold. Nevertheless, a global convergence result holds, as shown in [31]. In general, convex
optimization problems with only equality constraints are usually easy to deal with, and the proposed
algorithm behaves very well when solving such problems in practice.

5.1.2 Constraint Matrixz Scaling

In the pre-processing stage, we check if the constraint matrix is well scaled, i.e if:

( max (JAY]) < 10) A ( min O (JAY)) > 0.1>.
i€{1,.m},je{1,...n} i€{1,..,m},jE{L,..,n}: |AT[>0

If the previous is not satisfied, we apply geometric scaling in the rows of A, that is, we multiply each
row of A by a scalar of the form:
i 1 ,
d = , for all i € {1,...,m}.

je{1,--- ,n} je{l,...,n}: |A¥|>0

However, for numerical stability, we find the largest integer p’, such that or' < d* and we set

db = 2”1, for all i« € {1,...,m}. Hence, the scaling factors are powers of two. Based on the IEEE
representation of floating point numbers, multiplying by a power of 2 translates into an addition of
this power to the exponent, without affecting the mantissa. This scaling technique is based on the
one used within the GLPK solver (see [15]).

5.1.8 Starting Point, Newton-step Computation and Step-length

We use a starting point, based on the developments in [23]. To construct it, we try to solve the pair
of problems (P)-(D), ignoring the non-negativity constraints.

i=ATAATY ", §=(AATY 1 A(c+Qi), z=c—ATj+Qi.

However, in order to ensure stability and efficiency, we regularize the matrix AAT and employ the
Preconditioned Conjugate Gradient (PCG) method to solve these systems (in order to avoid forming
AAT). We use the classical Jacobi preconditioner to accelerate PCG, i.e. P = diag(AAT) + 61, where
0 = 8, is set as the regularization parameter.

Then, to guarantee positivity and sufficient magnitude of =, z;, we compute d, = max{—1.5-
min(z7),0} and 6, = max{—1.5 - min(z!), 0} and we obtain:

(& + bze;)" (B + 82¢y1) i—s +05(51 +6zep)" (B + 8ze)p))
. ) z — Yz . R
S GO +62) YL @O +5,)

where e|7| is the vector of ones of appropriate dimension. Finally, we set:

82 = 62 +0.5

U S P O F_ ~F
Yyo=9y, 20 =2 +ozeq, 20 =0, o= +dze, Tp =T .

In order to find the Newton step, we employ a widely used predictor-corrector method. The
practical implementation deviates from the theory at this point, in order to gain computational
efficiency. We provide the algorithmic scheme in Algorithm PC for completeness, but the reader is
referred to [23], for an extensive review of the method. It is important to notice that the centering
parameter (o > 0) is not present in Algorithm PC. Solving two different systems, serves as a way of
decreasing the infeasibility and allowing u; (and hence &, pi) to decrease.
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Algorithm PC Predictor-Corrector method
Compute the predictor:

[*(QJr@k’l + prI) AT} {Apz] _ [chQack — ATy — p(zr — (k) — da,, (47)
A Sil| |Apy b— Az — 6 (yr — k) ’

where df = —up(X[)"leyy), df, =0, and (€))7 = (X[)~1(Z]), (©F )" =0.
Retrieve Ayz:
Ape =df, — (XD TNz Apa"), ApF =0

Compute the step in the non-negativity orthant:

21 i(i)
max __ . _ max __ _ : . _ c
X = mm(Apa:i“)<0){1’ Tpml(i) }, oy = mm(Asz“)<0){1’ I0) }7

fori=1,---,|I|, and set:

with 7 = 0.995 > avoid going too close to the boundary.
Compute a centrality measure:
ga = (@7 + ax ApzHT (21 + s ApzT).
Jo )2 ga
@)
Compute the corrector:

Set: p = (
,(QJFQI;l +piI) AT| [Acz _ da,, (48)
A Spl| |Acy 0|’
with df = u(X[)"te — (X{) 71 ApXTApz" and dj, = 0, ApX = diag(Apz).

Retrieve Acz:
Azl =df — (X)) N (Z{Ax"), A =0.

(Az, Ay, Az) = (Apz + Acz, Apy + Acy, Apz + Acz).

Compute the step in the non-negativity orthant:

I(z) zlm
) k . k
o = mlnAzI<i><0{1’ *m} o = m‘“ﬂz”iko{l’ ’W}
and set:

Update:
(Trg1, Ukt1, 2k41) = (T + Az, yp + @z Ay, 2 + az Az).

We solve the systems (47) and (48), using the built-in MATLAB symmetric decomposition (i.e.
1d1). Such a decomposition always exists, with D diagonal, for the aforementioned systems, since
after introducing the regularization, the system matrices are guaranteed to be quasi-definite; a class
of matrices known to be strongly factorizable, [34]. In order to exploit that, we change the default
pivot threshold of 1d1 to a value slightly lower than the minimum allowed regularization value (reg;,,;
specified in sub-section 5.1.4). Using such a small pivot threshold guarantees that no 2x2 pivots will
be employed during the factorization process.

5.1.4 PMM Parameters

At this point, we discuss how we update the PMM sub-problems in practice, as well as how we tune
the penalty parameters (regularization parameters) 6, p. Notice that in Section 3 we set d; = pr, = pg.
While this is beneficial in theory, as it gives us a reliable way of tuning the penalty parameters of the
algorithm, it is not very beneficial in practice, as it does not allow us to control the regularization
parameters in the cases of extreme ill-conditioning. Hence, we allow the use of different penalty
parameters connected to the PMM sub-problems, while enforcing both parameters (J, pg) to decrease
at the same rate as p;, (based on the theoretical results in Sections 3, 4).

On the other hand, the algorithm is more optimistic in practice than it is in theory. In particular,
we do not consider the semi-norm (17) of the infeasibility, while we allow the update of the estimates
Ak, Ck, to happen independently. In particular, the former is updated when the 2-norm of the primal
infeasibility is sufficiently reduced, while the latter is updated based on the dual infeasibility.
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More specifically, at the beginning of the optimization, we set: do = 8, po = 8, Ao = yo, o = xo.
Then, at the end of every iteration, we employ the algorithmic scheme given in Algorithm PEU.
In order to ensure numerical stability, we do not allow & or p to become smaller than a suitable
positive value, reg,;,.. We set: reg;,, = max {W;HQH%&}’ 107'9}. This value is based on the
developments in [29], in order to ensure that we introduce a controlled perturbation in the eigenvalues
of the non-regularized linear system. The reader is referred to [29] for an extensive study on the
subject. If the factorization fails, we increase the regularization parameters by a factor of 10 and
repeat the factorization. If the factorization fails while either § or p have reached their minimum
allowed value (reg,y,.), then we also increase this value by a factor of 10. If this occurs 5 consecutive
times, the method is terminated with a message indicating ill-conditioning.

Algorithm PEU Penalty and Estimate Updates

= ki) (rate of decrease of p).
if (||[Azgy1 —bll2 <0.95- ||Azy — bl|2) then
Ak+1 = Yk+1,
Spp1 =1 —71) b
else
Ak+1 = Ak,
01 = (1— %7”) - Ok, > less aggressive is in this case.
end if
Op+1 = max{dx4+1,re:p, > for numerical stability (ensure quasi-definiteness).

if (le+ Qzry1 — At ypt1 — zk+1ll2 <0.95 - |lc + Qzy, — ATy — zi|2) then
Ckt1 = Tht1-
prt1 = (1—7) - pr.

else

Crt1 = Ck-

Pr1 = (1 — %7’) - Pk-
end if

P41 = max{prq1,Tegp, -

5.1.5 Termination Criteria

There are four possible termination criteria. They are summarized in Algorithm TC. In the afore-
mentioned algorithm, tol represents the error tolerance chosen by the user. Similarly, IPy,axi¢ is the
maximum allowed IPM iterations, also chosen by the user. On the other hand, PMM .yt is a thresh-
old indicating that the PMM sub-problem needs too many iterations before being updated (that is
if kpyiv > PMMpaxit ). We set PMMpaxis = 5. When either A, or ¢, is updated, we set kpyn = 0.

Let us now support the proposed infeasibility detection mechanism. In particular, notice that
as long as the penalty parameters do not converge to zero, every PMM-subproblem must have a
solution, even in the case of infeasibility. Hence, we expect convergence of the regularized primal
(dual, respectively) infeasibility to zero, while from Section 4, we know that a necessary condition for
infeasibility is that the sequence ||(zg — Ck,yr — Ag)||2 diverges. If this behaviour is observed, while
the PMM parameters A, (i are not updated (which is not expected to happen in the feasible but
rank deficient case), then we can conclude that the problem under consideration is infeasible.

5.2 Numerical Results

At this point, we present the computational results obtained by solving a set of small to large
scale linear and convex quadratic problems. In order to stress out the importance of regularization,
we compare IP-PMM with a non-regularized IPM. The latter implementation, follows exactly from
the implementation of IP-PMM, simply by fixing § and p to zero. In the non-regularized case, the
minimum pivot of the 1dl function is restored to its default value, in order to avoid numerical
instability. Throughout all of the presented experiments, we set the number of maximum iterations
to 200. It should be noted here, that we expect IP-PMM to require more iterations to converge, as
compared to the non-regularized IPM. In turn, the Newton systems arising in IP-PMM, have better
numerical properties (accelerating the factorization process), while overall the method is expected
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Algorithm TC Termination Criteria

Input: tol, k1p, kpMM, IPmaxit, PMMmpaxit-

: le=AT yp+Qay —2 | l[b—Awy |
if (( maxk{HcHgl,cl} Ell2 < tol) A (Wb\lkzj} < tol) A (Mk < tol)) then

return Solution (zk, yx, 2k)-
else if ((||C+ Qry — ATy — 21 + pr(zr — Go)ll2 < tol) A (lzx — Crll2 > 1010)) then

if (kpMM > PMMmaxit) then > PMM sub-problem not updated for many iterations
Declare Infeasibility.
end if

else if ((Hb — Az — 8 (yk — M)ll2 < tol) A (lyk — Agll2 > 1019) ) then

if (k’pMM > PMMmaxit) then
Declare Infeasibility.
end if
else if (kip > IPyaxit) then > Maximum IPM iterations reached.
No Convergence.
end if

to be significantly more stable. In what follows, we demonstrate that this increase in the number of
iterations is benign, in that it does not make the resulting method inefficient. In contrast, we provide
computational evidence that the acceleration of the factorization process more than compensates for
the increase in the number of iterations. The experiments were conducted on a PC with a 2.2GHz Intel
Core i7 processor (hexa-core), 16GB RAM, run under Windows 10 operating system. The MATLAB
version used was R2018b.

5.2.1 Linear Programming Problems

Let us compare the proposed method with the respective non-regularized implementation, over the
Netlib collection, [27]. The test set consists of 96 linear programming problems. We set the desired
tolerance to tol = 1076, Firstly, we compare the two methods, without using the pre-solved version of
the problem collection (e.g. allowing rank-deficient matrices). In this case, the non-regularized IPM
converged for only 66 out of the total 96 problems. On the other hand, IP-PMM solved successfully
the whole set, in 160 seconds (and a total of 2,609 IPM iterations). Hence, one of the benefits of
regularization, that of alleviating rank deficiency of the constraint matrix, becomes immediately
obvious.

However, in order to explore more potential benefits of regularization, we run the algorithm on
a pre-solved Netlib library. In the pre-solved set, the non-regularized IPM converged for 93 out of
96 problems. The three failures occurred due to instability of the Newton system. The overall time
spent was 353 seconds (and a total of 1,871 IPM iterations). On the other hand, IP-PMM solved
the whole set in 161 seconds (and a total of 2,367 iterations). Two more benefits of regularization
become obvious here. Firstly, we can observe that numerical stability can be a problem in a standard
IPM, even if we ensure that the constraint matrices are of full row rank. Secondly, notice that despite
the fact that ITP-PMM required 26% more iterations, it still solved the whole set in 55% less CPU
time. This is because in IP-PMM, only diagonal pivots are allowed during the factorization. We could
enforce the same condition on the non-regularized IPM, but then significantly more problems would
fail to converge (22/96) due to numerical instability.

In Table 1, we collect statistics from the runs of the two methods over some medium scale instances
of the pre-solved Netlib test set.
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Table 1: Medium-Scale Netlib Problems

Name nnz(A) 1P-PMM 1PM
Time (s) TP-Iter. Time (s) IP-Tter.
80BAU3B 29,063 1.43 44 9.68 40
D6CUBE 43,888 1.26 25 9.64 22
DFL001 41,873 25.42 47 el t
FIT2D 138,018 8.52 27 23.94 25
FIT2P 60, 784 1.24 24 1.56 19
PILOT87 73,804 7.21 49 95.04 46
QAP15 110, 700 91.78 23 93.56 18

From Table 1, it becomes obvious that the factorization efficiency is significantly improved by the
introduction of the regularization terms. In all of the presented instances, IP-PMM converged needing
more iterations, but requiring less CPU time.

In order to summarize the comparison of the two methods, we include Figure 1, which contains
the performance profiles, over the pre-solved Netlib set, of the two methods. IP-PMM is represented
by the green line (consisted of triangles), while non-regularized IPM by the blue line (consisted of
stars). In Figure la, we present the performance profile with respect to time required for conver-
gence, while in Figure 1b, the performance profile with respect to the number of iterations. In both
figures, the horizontal axis is in logarithmic scale, and it represents the ratio with respect to the best
performance achieved by one of the two methods, for each problem. The vertical axis shows the per-
centage of problems solved by each method, for different values of the performance ratio. Robustness
is “measured” by the maximum achievable percentage, while efficiency by the rate of increase of each
of the lines (faster increase translates to better efficiency). For more information about performance
profiles, we refer the reader to [10], where this benchmarking was proposed. One can see that all of
our previous observations are verified in Figure 1.

Fig. 1: Performance profiles over the pre-solved Netlib test set.
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5.2.2 Infeasible Problems

In order to assess the accuracy of the proposed infeasibility detection criteria, we attempt to solve 28
infeasible problems, coming from the Netlib infeasible collection ([27], see also Infeasible Problems).
For 22 out of the 28 problems, the method was able to recognize that the problem under consideration
is infeasible, and exit before the maximum number of iterations was reached. There were 4 problems,
for which the method terminated after reaching the maximum number of iterations. For 1 problem
the method was terminated early due to numerical instability. Finally, there was one problem for
which the method converged to the least squares solution, which satisfied the optimality conditions
for a tolerance of 107°. Overall, IP-PMM run all 28 infeasible problems in 34 seconds (and a total
of 1,813 IPM iterations). The proposed infeasibility detection mechanism had a 78% rate of success
over the infeasible test set, while no feasible problem was misclassified as infeasible. A more accu-
rate infeasibility detection mechanism could be possible, however, the proposed approach is easy to

1 The symbol { means that the method did not converge.
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implement and cheap from the computational point of view. Nevertheless, the interested reader is
referred to [4,20] and the references therein, for various other infeasibility detection methods.

5.2.83 Quadratic Programming Problems

Next, we present the comparison of the two methods over the Maros—Mészaros test set ([22]), which is
comprised of 122 convex quadratic programming problems. Notice that in the previous experiments,
we used the pre-solved version of the collection. However, we do not have a pre-solved version of
this test set available. Since the focus of the paper is not on the pre-solve phase of convex problems,
we present the comparison of the two methods over the set, without applying any pre-processing.
As a consequence, non-regularized IPM fails to solve 27 out of the total 122 problems. However,
only 11 out of 27 failed due to rank deficiency. The remaining 16 failures occurred due to numerical
instability. On the contrary, IP-PMM solved the whole set successfully in 127 seconds (and a total of
3,014 iterations). As before, the required tolerance was set to 10—,

In Table 2, we collect statistics from the runs of the two methods over some medium scale instances
of the Maros—Mészaros collection.

Table 2: Medium-Scale Maros—Mészaros Problems

IP-PMM IPM
Name nnz(A) nnz(Q) Time (s) IP-Tter. Time (s) TP-Tter.
AUG2DCQP 40,000 40, 400 4.70 83 7.21 111
CVXQP1L 14,998 69, 968 25.54 38 } t
CVXQP3L 22,497 69, 968 45.69 59 t +
LISWET1 30,000 10,002 1.07 30 1.86 40
POWELL20 20,000 10,000 1.26 30 1.61 25
QSHIP12L, 16,170 122,433 0.91 23 i ¥
STCQP1 13,338 49,109 0.38 16 6.89 13

In order to summarize the comparison of the two methods, we include Figure 2, which contains the
performance profiles, over the Maros—Mészaros test set, of the two methods. IP-PMM is represented
by the green line (consisted of triangles), while non-regularized IPM by the blue line (consisted of
stars). In Figure 2a, we present the performance profile with respect to time required for convergence,
while in Figure 2b, the performance profile with respect to the number of iterations.

Fig. 2: Performance profiles over the Maros—Mészaros test set.
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Similar remarks can be made here, as those given when summarizing the linear programming exper-
iments. One can readily observe the importance of the stability introduced by the regularization. On
the other hand, the overhead in terms of number of iterations that is introduced due to regulariza-
tion, is acceptable due to the acceleration of the factorization (since we are guaranteed to have a
quasi-definite augmented system).



28 Spyridon Pougkakiotis, Jacek Gondzio

5.2.4 Verification of the Theory

We have already presented the benefits of using regularization in interior point methods. A question
arises, as to whether a regularized IPM can actually find an exact solution of the problem under
consideration. Theoretically, we have proven this to be the case. However, in practice one is not
allowed to decrease the regularization parameters indefinitely, since ill-conditioning will become a
problem. Based on the theory of augmented Lagrangian methods, one knows that sufficiently small
regularization parameters suffice for exactness (see [(], among others). In what follows, we provide
a “table of robustness” of IP-PMM. We run the method over the Netlib and the Maros-Mészaros
collections, for decreasing values of the required tolerance and report the number of problems that
converged.

Table 3: Table of Robustness

Test Set Tolerance Problems Converged

Netlib (non-presolved) 10~ 96/96
” 108 95/96

” 1010 94/96

Netlib (presolved) 10~ 96/96

” 108 94/96

” 1010 94/96

Maros-Mészaros 10-9 122/122

” 10-8 121/122

K 10—10 112/122

One can observe from Table 3 that IP-PMM is sufficiently robust. Even in the case where a 10
digit accurate solution is required, the method is able to maintain a success rate larger than 91%.

5.2.5 Large Scale Problems

All of our previous experiments were conducted on small to medium scale linear and convex quadratic
programming problems. We have shown (both theoretically and practically) that the proposed method
is reliable. However, it is worth mentioning the limitations of the current approach. Since we employ
exact factorization during the iterations of the IPM, we expect that the method will be limited in
terms of the size of the problems it can solve. The main bottleneck arises from the factorization,
which does not scale well in terms of processing time and memory requirements. In order to explore
the limitations, in Table 4 we provide the statistics of the runs of the method over a small set of large
scale problems. It contains the number of non-zeros of the constraint matrices, as well as the time
needed to solve the problem. The tolerance used in these experiments was 1076,

Table 4: Large-Scale Problems

Name Collection nnz(A) time (s) Status
fome21 Mittelmann 751,365 567.26 opt
pds-10 Mittelmann 250,307 40.00 opt
pds-30 Mittelmann 564,988 447.81 opt
pds-60 Mittelmann 1,320,986 2,265.39 opt
pds-100 Mittelmann 1,953,757 - no memory
rail582 Mittelmann 402,290 91.10 opt
cre-b Kennington 347,742 24.48 opt
cre-d Kennington 323,287 23.49 opt
stocfor3 Kennington 72,721 4.56 opt
ken-18 Kennington 667,569 77.94 opt
osa-30 Kennington 604,488 1723.96 opt
nug-20 QAPLIB 304,800 386.12 opt
nug-30 QAPLIB 1,567,800 - no memory

From Table 4, it can be observed that as the dimension of the problem grows, the time to
convergence is significantly increased. This increase in time is disproportionate for some problems.
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The reason for that, is that the required memory could exceed the available RAM, in which case
the swap-file is activated. Access to the swap memory is extremely slow and hence the time could
potentially increase disproportionately. On the other hand, we retrieve two failures due to lack of
available memory. The previous issues could potentially be addressed by the use of iterative methods.
Such methods, embedded in the IP-PMM framework, could significantly relax the memory as well
as the processing requirements, at the expense of providing inexact directions. Combining IP-PMM
(which is stable and reliable) with such an inexact scheme (which could accelerate the IPM iterations)
seems to be a viable and competitive alternative and will be addressed in a future work.

6 Conclusions

In this paper, we present an algorithm suitable for solving convex quadratic programs. It arises
from the combination of an infeasible interior point method with the proximal method of multipliers
(IP-PMM). The method is interpreted as a primal-dual regularized IPM, and we prove that it is
guaranteed to converge in a polynomial number of iterations, under standard assumptions. As the
algorithm relies only on one penalty parameter, we use the well-known theory of IPMs to tune it.
In particular, we treat this penalty as a barrier parameter, and hence the method is well-behaved
independently of the problem under consideration. Additionally, we derive a necessary condition for
infeasibility and use it to construct an infeasibility detection mechanism. The algorithm is imple-
mented, and the reliability of the method is demonstrated. At the expense of some extra iterations,
regularization improves the numerical properties of the interior point iterations. The increase in the
number of iterations is benign, since factorization efficiency as well as stability is gained. Not only
the method remains efficient, but it outperforms a similar non-regularized IPM scheme.

We observe the limitations of the current approach, due to the cost of factorization, and it
is expected that embedding iterative methods in the current scheme might further improve the
scalability of the algorithm at the expense of inexact directions. Since the reliability of IP-PMM is
demonstrated, it only seems reasonable to allow for approximate Newton directions and still expect
fast convergence. Hence, a future goal is to extend the theory as well as the implementation, in order
to allow the use of iterative methods for solving the Newton system.
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