29,389 research outputs found

    Peephole optimization of assembly language using regular expression pattern matching.

    Get PDF
    Producing compilers for high level computer languages is difficult. The early phases of the compiler, syntactical and lexical analysis, are well understood and have been automated. Code generation is more ad-hoc in both design and implementation. The code generators in use may be sufficiently complex that the output could benefit from additional optimization. This thesis describes current efforts . to produce peephole optimizers which perform optimizations on the compiler output. A case is presented for basing optimizations on human written rules. A peephole optimizer generator is presented which reads a rule language which includes regular expressions and produces an executable program which operates on the assembly language output from a compiler. The resultant program, named OP, implements the guidelines specified in the original specification. Pattern matching is used within OP to track both register assignments and the matching of rules. Therefore, regular expression notation is sufficient for generating peephole optimizers

    A Visual aide for designing regular expression parsers

    Get PDF
    This paper describes a thesis project in which a visually-oriented design utility is constructed in Interlisp-D for the Xerox 1108 Artificial Intelligence Workstation. This utility aids in the design of Regular Expression Parsers by visually simulating the operation of a parser. A textual program, suitable for utilization in the construction of a compiler scanner or other similar processor may be produced by the utility

    Merlin: A Language for Provisioning Network Resources

    Full text link
    This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them

    Using shared-data localization to reduce the cost of inspector-execution in unified-parallel-C programs

    Get PDF
    Programs written in the Unified Parallel C (UPC) language can access any location of the entire local and remote address space via read/write operations. However, UPC programs that contain fine-grained shared accesses can exhibit performance degradation. One solution is to use the inspector-executor technique to coalesce fine-grained shared accesses to larger remote access operations. A straightforward implementation of the inspector executor transformation results in excessive instrumentation that hinders performance.; This paper addresses this issue and introduces various techniques that aim at reducing the generated instrumentation code: a shared-data localization transformation based on Constant-Stride Linear Memory Descriptors (CSLMADs) [S. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003.], the inlining of data locality checks and the usage of an index vector to aggregate the data. Finally, the paper introduces a lightweight loop code motion transformation to privatize shared scalars that were propagated through the loop body.; A performance evaluation, using up to 2048 cores of a POWER 775, explores the impact of each optimization and characterizes the overheads of UPC programs. It also shows that the presented optimizations increase performance of UPC programs up to 1.8 x their UPC hand-optimized counterpart for applications with regular accesses and up to 6.3 x for applications with irregular accesses.Peer ReviewedPostprint (author's final draft

    Enhancing R with Advanced Compilation Tools and Methods

    Full text link
    I describe an approach to compiling common idioms in R code directly to native machine code and illustrate it with several examples. Not only can this yield significant performance gains, but it allows us to use new approaches to computing in R. Importantly, the compilation requires no changes to R itself, but is done entirely via R packages. This allows others to experiment with different compilation strategies and even to define new domain-specific languages within R. We use the Low-Level Virtual Machine (LLVM) compiler toolkit to create the native code and perform sophisticated optimizations on the code. By adopting this widely used software within R, we leverage its ability to generate code for different platforms such as CPUs and GPUs, and will continue to benefit from its ongoing development. This approach potentially allows us to develop high-level R code that is also fast, that can be compiled to work with different data representations and sources, and that could even be run outside of R. The approach aims to both provide a compiler for a limited subset of the R language and also to enable R programmers to write other compilers. This is another approach to help us write high-level descriptions of what we want to compute, not how.Comment: Published in at http://dx.doi.org/10.1214/13-STS462 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Fast Compiler for NetKAT

    Full text link
    High-level programming languages play a key role in a growing number of networking platforms, streamlining application development and enabling precise formal reasoning about network behavior. Unfortunately, current compilers only handle "local" programs that specify behavior in terms of hop-by-hop forwarding behavior, or modest extensions such as simple paths. To encode richer "global" behaviors, programmers must add extra state -- something that is tricky to get right and makes programs harder to write and maintain. Making matters worse, existing compilers can take tens of minutes to generate the forwarding state for the network, even on relatively small inputs. This forces programmers to waste time working around performance issues or even revert to using hardware-level APIs. This paper presents a new compiler for the NetKAT language that handles rich features including regular paths and virtual networks, and yet is several orders of magnitude faster than previous compilers. The compiler uses symbolic automata to calculate the extra state needed to implement "global" programs, and an intermediate representation based on binary decision diagrams to dramatically improve performance. We describe the design and implementation of three essential compiler stages: from virtual programs (which specify behavior in terms of virtual topologies) to global programs (which specify network-wide behavior in terms of physical topologies), from global programs to local programs (which specify behavior in terms of single-switch behavior), and from local programs to hardware-level forwarding tables. We present results from experiments on real-world benchmarks that quantify performance in terms of compilation time and forwarding table size
    corecore