1 research outputs found

    Associative Instruction Reordering to Alleviate Register Pressure

    Get PDF
    International audienceRegister allocation is generally considered a practically solved problem. For most applications, the register allocation strategies in production compilers are very effective in controlling the number of loads/stores and register spills. However, existing register allocation strategies are not effective and result in excessive register spilling for computation patterns with a high degree of many-to-many data reuse, e.g., high-order stencils and tensor contractions. We develop a source-to-source instruction reordering strategy that exploits the flexibility of reordering associative operations to alleviate register pressure. The developed transformation module implements an adaptable strategy that can appropriately control the degree of instruction-level parallelism, while relieving register pressure. The effectiveness of the approach is demonstrated through experimental results using multiple production compilers (GCC, Clang/LLVM) and target platforms (Intel Xeon Phi, and Intel x86 multi-core)
    corecore