
HAL Id: hal-01956260
https://hal.inria.fr/hal-01956260

Submitted on 15 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Associative Instruction Reordering to Alleviate Register
Pressure

Prashant Singh Rawat, Aravind Sukumaran-Rajam, Atanas Rountev, Fabrice
Rastello, Louis-Noël Pouchet, P. Sadayappan

To cite this version:
Prashant Singh Rawat, Aravind Sukumaran-Rajam, Atanas Rountev, Fabrice Rastello, Louis-Noël
Pouchet, et al.. Associative Instruction Reordering to Alleviate Register Pressure. SC 2018 - Inter-
national Conference for High Performance Computing, Networking, Storage, and Analysis, Nov 2018,
Dallas, United States. pp.1-13. �hal-01956260�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162945748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01956260
https://hal.archives-ouvertes.fr


Associative Instruction Reordering to Alleviate
Register Pressure

Prashant Singh Rawat†, Aravind Sukumaran-Rajam†, Atanas Rountev†, Fabrice Rastello‡,
Louis-Noël Pouchet§, P. Sadayappan†

† The Ohio State University, USA
{rawat.15, sukumaranrajam.1, rountev.1, sadayappan.1}@osu.edu

‡ Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
fabrice.rastello@inria.fr

§ Colorado State University, USA
pouchet@colostate.edu

Abstract—Register allocation is generally considered a prac-
tically solved problem. For most applications, the register al-
location strategies in production compilers are very effective
in controlling the number of loads/stores and register spills.
However, existing register allocation strategies are not effective
and result in excessive register spilling for computation patterns
with a high degree of many-to-many data reuse, e.g., high-order
stencils and tensor contractions. We develop a source-to-source
instruction reordering strategy that exploits the flexibility of
reordering associative operations to alleviate register pressure.
The developed transformation module implements an adaptable
strategy that can appropriately control the degree of instruction-
level parallelism, while relieving register pressure. The effec-
tiveness of the approach is demonstrated through experimental
results using multiple production compilers (GCC, Clang/LLVM)
and target platforms (Intel Xeon Phi, and Intel x86 multi-core).

Index Terms—Compilers, register pressure, associative re-
ordering, domain-specific optimization

I. INTRODUCTION

As we approach the end of Moore’s law scaling, there will
be increasing emphasis on maximizing single-node efficiency,
in addition to achieving good scalability across the nodes of a
supercomputer. Compilers play a very critical role in enabling
high performance and efficiency within a node. In this paper,
we revisit a compiler problem that is generally considered to
be solved for all practical purposes: register allocation. For
most programs, the register allocation and instruction schedul-
ing strategies in production compilers are very satisfactory, and
the number of register spills is well controlled. However, this
is not the case for many compute-intensive array-based appli-
cations in computational science and machine-learning/data-
science that feature multiple inter-related reuses. With such
computations, a number of variables in a basic block of
instructions exhibit many coupled reuses, with different groups
of instructions referencing different combinations of the set
of reused variables. As clearly demonstrated with quantitative
data later in the paper, existing register management strategies
in production compilers are unable to effectively control the
number of register spills for such computations. These many-
to-many reuse patterns typically involve associative accumula-
tion of multiple contributions into destination variables. In this

paper, we develop an effective instruction reordering strategy
that exploits the flexibility offered by associative operations.
We demonstrate significant alleviation of register pressure and
spilling, and corresponding enhancement of performance.

We use a high-order “box” stencil computation to elaborate
on the addressed problem. First, let us consider a simple 2D
9-point Jacobi computation:

for(i=1;i<N-1;i++)
for(j=1;j<N-1;j++)

A[i][j] = c*(B[i-1][j-1] + B[i-1][j] + B[i-1][j+1] +
B[i][j-1] + B[i][j] + B[i][j+1] +
B[i+1][j-1] + B[i+1][j] + B[i+1][j+1]);

For computing each element A[i][j], the corresponding
element B[i][j] and all 8 neighboring elements are read. For
two adjacent result elements, A[i][j] and A[i][j+1], six of the
needed elements from B are common. By explicitly unrolling
the inner j loop, these potential reuses are exposed in the
resulting basic block of code in the unrolled loop. However, for
a 4-way unrolled version of an 81-point convolution stencil,
with GCC-7.2.0 as the base compiler on an Intel i7-6700K
processor, we observe the number of memory accesses per
iteration increases from 269 to 664 in the generated assembly
code, and the performance drops from 72 GFLOPS to 70
GFLOPS when going from the original non-unrolled form to
the unrolled version.

For such high-order stencils, the problem has been recog-
nized in prior work and a solution provided: exploit associa-
tivity to reorder operations and create a different equivalent
stencil pattern [1]. With this changed access pattern, it has
been shown [1] that the maximum number of concurrently
live registers reduces from O(k2) to just O(k) for an order-
k box stencil. Rearranging the contributions for the 81-point
convolution stencil, such that the contribution from an input
value is “scattered” to different output points, brings down the
memory accesses per iteration in the unrolled code to 206, and
the performance increases from 70 GFLOPS to 137 GFLOPS.

In this paper we develop a general solution for the as-
sociative reordering problem, without using any specialized
abstractions such as stencil patterns as was used by Stock et
al. [1]. We devise an instruction reordering strategy that simul-



taneously considers the flexibility with associative reordering
of accumulations and the impact of instruction order on the
maximum number of live values.

We develop a List-based Adaptive Register-reuse-driven
Scheduler (LARS) that uses multiple criteria, including affini-
ties of non-live variables to those live in registers, as well
as potentials of variables to fire operations and to release
registers. We chose to implement the instruction scheduler as a
source-to-source pass outside the compiler, to be executed be-
fore the standard compiler passes. By doing so, we are able to
evaluate its impact with two production compilers, LLVM and
GCC. We present experimental results on a large collection
of benchmarks that exhibit significant potential register-level
reuse for array elements. We demonstrate significant benefits
from the use of LARS.

The paper makes the following contributions:
• It develops a framework to reduce register pressure by

exploiting the flexibility of associative reordering for
computational kernels with multiple inter-related reuses.

• It develops a flexible multi-criteria instruction reordering
heuristic that can be adapted across architectures.

• It demonstrates the effectiveness of the proposed frame-
work for a number of scientific kernels when compiled
with different compilers and on multiple architectures.

II. BACKGROUND AND MOTIVATION

Register Allocation and Instruction Scheduling: Register
allocation assigns physical registers to the variables used in
the intermediate representation (IR). All variables that are live
at a given program point must be assigned to distinct registers
if register spills are to be avoided. We denote as MAXLIVE
the maximum number of variables that are simultaneously live
at any program point through the execution of the program.
A data reuse refers to multiple accesses to the same variable.
Spill instructions are generated when the allocator runs out
of physical registers: some registers are freed after their
contents are stored into memory or simply discarded. The
spilled contents must be reloaded into registers before their
subsequent use. Since memory accesses have high latency,
minimizing spills is important for performance.

Several techniques have been proposed to perform register
allocation. Most compilers use versions of graph coloring [2]
or linear scan [3]. Both these techniques perform register
allocation on a fixed instruction schedule that is obtained after
performing instruction scheduling on the IR. The instruction
scheduler orders the instructions to minimize the schedule
length and simultaneously increase the instruction-level par-
allelism (ILP), so that the functional units and pipelines of
the underlying processor are effectively utilized. Clearly, the
objectives of instruction scheduling and register allocation can
be antagonistic: instruction scheduling may prefer independent
instructions scheduled in proximity to increase ILP, whereas
register allocation may prefer data-dependent instructions to be
scheduled in proximity to shorten the live ranges. This problem
is more pronounced for applications that exhibit complex,
many-to-many data reuse pattern: the instruction scheduler

Listing 1: Unrolled input
1 for (int j=2; j<N-2; j++)
2 for (int i=2; i<N-2; i++) {
3 A[j][i] = a*B[j-2][i] + b*B[j-1][i] + c*B[j][i] +
4 d*B[j+1][i] + B[j][i]*B[j+2][i];
5 A[j+1][i] = p*B[j-1][i] + q*B[j][i] + r*B[j+1][i] +
6 s*B[j+2][i] + B[j+1][i]*B[j+3][i];
7 }

Listing 2: A reordering that leverages associativity of +
1 for (int j=2; j<N-2; j++)
2 for (int i=2; i<N-2; i++) {
3 A[j][i] = a*B[j-2][i];
4 A[j][i] += c*B[j][i] + B[j][i]*B[j+2][i];
5 A[j+1][i] = s*B[j+2][i] + q*B[j][i];
6 A[j][i] += b*B[j-1][i] + d*B[j+1][i];
7 A[j+1][i] += p*B[j-1][i] + r*B[j+1][i];
8 A[j+1][i] += B[j+1][i]*B[j+3][i];
9 }

does not consider the reuse pattern while generating the initial
instruction ordering, resulting in increased live ranges for
variables.

Associative Instruction Reordering: Sometimes, a better
instruction reordering can be achieved if one leverages asso-
ciativity of operations. Although floating-point additions are
not strictly associative, it is generally acceptable to perform
associative reordering of accumulations in most applications
that do not rely on rounding behavior. In fact, many scientific
computations are compiled using -ffast-math flag [4], which
allows a compiler to exploit associativity of floating-point
operations to improve performance at the expense of IEEE
compliance. Many recent efforts have leveraged operator as-
sociativity to drive code optimization strategies [1], [5], [6].

Consider the input program of Listing 1. The two statements
read from four common input values. If the computation of
the first statement entirely precedes the second statement, then
these four values must be kept alive in registers. However, one
can leverage the associativity of addition to reorder the compu-
tation as shown in Listing 2. In the reordered computation, the
evaluation of the two output points is interleaved, so that all the
uses of an input value are brought closer, and consequently, its
live range is shortened. However, most production compilers
perform instruction scheduling and register allocation on an
IR like Register Transfer Language (RTL), which is low-level,
and much closer to the machine mnemonics. Most compiler
frontends operate on one or more high-level IRs. For example,
GCC has two high-level IRs: GIMPLE and Static Single
Assignment (SSA). GIMPLE is closer in spirit to the input,
and captures operator associativity naturally. When GIMPLE
is lowered to SSA, the accumulation operations are converted
to a use-def chain of contributions. SSA is further lowered
to RTL by applying a sequence of intra and interprocedu-
ral optimizations. Leveraging operator associativity at RTL
would involve lifting the complex RTL to a higher GIMPLE-
like abstraction that naturally expresses operator associativity,
which is difficult. Therefore, most compilers fail to fully utilize
operator associativity to relieve register pressure.

Solution Approach: Many prior efforts have studied the
implications of phase ordering between register allocation



t1 = ((d*c) + (b/c) + (b*e) + (d/f)) * g + d * g;
t2 = (n*p) + ((f+e) * p);

(a) Illustrative computation

1. a = d * c;
2. a += b / c;
3. a += b * e;
4. a += d / f;
5. t1 = a * g;
6. t1 += d * g;
7. m = n * p;
8. q = f + e;
9. r = q * p;
10. t2 = m + r;

(b) Initial schedule (c) Input CDAG (d) CDAG with accumulations (e) Dependence graph

Fig. 1: Example: statements lowered down to sequence of instructions, and corresponding CDAG

Listing 3: Input in a representative DSL
1 void j3d7pt (float *out, float *in, int a, int b, int c) {
2 . . .
3 for (int k=0; k<N; k+=2)
4 for (int j=0; j<N; j+=2)
5 for (int i=0; i<N; i++) {
6 #pragma dsl begin iterator k,j,i unroll k=2,j=2
7 out[k][j][i] = a*(in[k+1][j][i]) + b*(in[k][j-1][i]
8 + in[k][j][i-1] + in[k][j][i] + in[k][j][i+1]
9 + in[k][j+1][i]) + c*(in[k-1][j][i]);

10 #pragma dsl end
11 }
12 }

and instruction scheduling on the generated code [7], [8],
[9]. These works proposed integrated register allocation and
instruction scheduler for VLIW or in-order issue superscalar
processors. However, none of these approaches leverage prop-
erties of the operators involved in the computations to improve
the instruction reordering. We show in Section IV that for
many scientific applications executed on out-of-order (OoO)
processors, register spills are a performance bottleneck. To this
end, we propose LARS (List-based, Adaptive, Register-reuse-
driven Scheduler)—a greedy instruction reordering framework
for straight-line code, that a) operates at source level to fully
exploit the associativity of operations, b) has a much better
global perspective of the computational reuse pattern, and c)
reorders the instructions minimize MAXLIVE.

III. INSTRUCTION REORDERING WITH LARS

A. Preprocessing Steps

LARS parses statements within a computational loop nest
that are expressed in a subset of C with the following re-
strictions: (1) the loop iterators and the program parameters
must be immutable in the statements; (2) the right-hand side
expression of a statement must be side-effect free; and (3) the
array index expressions in each statement must be an affine
function of the loop iterators, program parameters, and literals.

Listing 3 shows an example of preparing an input C code for
reordering using LARS. LARS currently uses a pragma-based
approach, where the straight-line code of interest is demarcated
using dsl pragmas. All the auxiliary information is supplied
as arguments to the dsl pragma. This makes it convenient to
use LARS with domain-specific languages that are similar in

flavor to C/C++ [10]. Lines 6 and 10 mark the beginning and
end, respectively, of the optimization region. The arguments in
line 6 indicate that i , j , and k are the loop iterators, and that
the demarcated statements need to be unrolled by an unrolling
factor of 2 along the dimensions corresponding to iterators k
and j .

A preprocessing pass performs loop unrolling by the spec-
ified unrolling factors, and then lowers each statement in
the optimization region into a sequence of instructions using
operator associativity and/or distributivity. The instructions are
somewhat similar in spirit to the three-address GIMPLE IR of
GCC, where the right-hand side of an instruction has at most
two operands, and the operator is either an assignment or an
accumulation. In terms of assembly language, these instruc-
tions are synonymous with the register-register instructions
(r1 ← r2 op r3 where r1 and r2/r3 can be the same register).

Figure 1a shows an illustrative computation which is low-
ered into the instructions shown in Figure 1b using the
associativity and distributivity of + and ∗. Note that even
though all the operands in the illustrative example are scalars,
in practice, the operands can be a mix of array accesses,
scalars, and literals. An abstraction commonly used to rep-
resent such computations is a computational DAG (CDAG)
[11], [12], where the leaf nodes represent the storage loca-
tions read, the root represents the output, and the internal
nodes represent the operators. For example, Figure 1c shows
the CDAG corresponding to the computation of Figure 1b,
whereas Figure 1d shows the CDAG corresponding to the
instructions after converting the additive contributions in the
original DAG to accumulations, represented in the figure by
orange “accumulation +” nodes. Throughout the text, we will
shift from an instruction sequence to its CDAG abstraction for
ease of explanation.

In order to reduce register pressure, LARS must gauge the
data reuse between the instructions in the original schedule. To
recognize the common uses of a value, the accessed storage
locations are assigned a label. All the accesses to the same
storage location within a statement will have the same label.
Across statements, the accesses to a storage location M will
be identified by the same label if there is no write to M in
between their execution.



(a) Tree of S1 (b) Tree of S2

Fig. 2: Expression tree of two statements

Fig. 3: Evaluating S4 before S1,2,3 reduces register pressure

B. Creating Multiple Initial Schedules

The time taken to reorder instructions is significantly lower
with a greedy heuristic than with techniques like dynamic
programming [13] or integer linear programming [14]. We use
this to our advantage, by reordering multiple versions of the
input program instead of just one, and choosing the reordering
with the best performance.

Figure 2 shows the expression tree of two statements,
the register requirement for which can be computed by the
classic Sethi-Ullman algorithm [12]. The numbers next to each
node in Figure 2 shows the number of registers required to
evaluate that node. There can be two evaluation scenarios:
(1) evaluating S1 before S2 will require 4 registers, since
the 3 registers released after evaluating S1 can be used to
entirely evaluate S2; (2) evaluating S2 before S1 will require
5 registers, since one register will be engaged in holding
the result of S2. This simple example demonstrates that if
one rewrites the pragma-demarcated computation as different
dependence-preserving permutations of input statements, each
permutation can possibly produce a reordering schedule with a
different register requirement. Determining the best statement
permutations becomes more complicated with an increase in
the number of statements, and inter-statement data reuse [15].
For example, each statement of Figure 3, in isolation, would
require 3 registers for evaluation: 2 to store the operands,
and one to store the result. A register assignment when
evaluating the statements in the order shown in Figure 3 is
{a → r1, b → r2, u → r3, e → r4, v → r1, g → r4, w →
r2, c→ r4, d→ r5, x→ r6}. However, the permutations that
evaluate S4 first will yield more register-optimal schedules
than other permutations. One possible register assignment
when S4 is evaluated first is {c → r1, d → r2, x → r3, a →
r1, b→ r2, u→ r4, e→ r5, v → r1, g → r5, w → r2}, which
uses 5 registers instead of 6.

In such situations, a brute-force approach to determine
the best permutation will examine all dependence-preserving
permutations of the input statements, and apply LARS to
each permutation. However, for a program with n independent

statements, this would imply exploring n! statement sequences,
a formidable task as n increases [15]. Instead, we use the
simple clustering algorithm from [16] to generate a few
different permutations that cluster the statements with reuses
together, and then apply LARS to only these few statement
permutations. Once we have the permutations, we choose one
permutation at a time, apply the preprocessing step described
in Section III-A to it, and then use LARS to reorder the
version. The final reordered version is the one that is more
efficient in execution. For the rest of the discussion, we will
assume that the input to LARS is a valid permutation P .

C. Overview of the Reordering Strategy

Given the initial schedule P , the main objective of LARS
is to compute a reordered schedule that preserves the de-
pendences, and reduces register pressure while maintaining
sufficient ILP. We use the initial schedule of Figure 1b as an
example to give a brief overview of the reordering strategy
implemented in LARS. Prior to reordering, we construct a de-
pendence graph (DG) for the initial schedule. Since we allow
the contributions to an accumulation node to be in arbitrary
order, we do not include the true/output dependences on the
accumulation node in DG. Figure 1e shows the dependence
graph for the schedule of Figure 1b.

Next, we compute the labels occurring in the initial sched-
ule. Figure 4a shows the mapping from the labels to the
instructions in which they appear. We maintain a set L of
labels that are currently live in pseudo registers, assuming
a spill-free1 model of computation. An instruction Ij in the
schedule can fall in one of the following three categories:
− Blocked: If Ij has a true dependence on another instruc-

tion Ik in the DG, and Ik has not yet been fired
− Unblocked: If Ij is not blocked
− Fireable: If Ij is unblocked, and all the labels of Ij are

in L.
Initially, only the instructions with no incoming dependence

edges in DG are unblocked (i.e., instructions 1, 2, 3, 4, 6, 7,
and 8 in the schedule of Figure 1b), and none of the labels are
live. In a nutshell, the reordering algorithm can be summed up
as two iterative steps: make the labels live in some order, so
that instructions become fireable (Section III-E), and append
the fired instructions into the final reordered schedule (Section
III-D). The objective is to minimize the size of L at any given
point, since the live range of labels simultaneously live in L are
in interference. At the same time, there must be sufficient ILP
to tolerate the access/execution latency. The order in which the
labels are made live and the fired instructions are appended
to the reordered schedule will affect the register pressure and
ILP; the heuristic used to determine this order is explained in
greater details in this section.

1) Reordering the computational DAG of Figure 1b: In
order to determine the first seed label that becomes live,
we compute an initial priority metric for each label; the
computation is described in details in Section III-E1. Simply

1A value once loaded in a register will remain so for all its def/uses



(a) Initial schedule (b) Step 1 (c) Step 2 (d) Step 3 (e) Step 4

Fig. 4: Applying LARS reordering strategy to the input of Figure 1b. The digits next to a label are color-coded, and represent
metrics that are explained in Section III-E2. green digit: number of non-live labels the label interacts with, red digit: cumulative
primary affinity, orange digit: fire potential, blue digit: release potential.

put, the labels occurring in instructions that are closer to
the source of the longest (critical) path in the CDAG are
assigned a higher initial priority. This is done so that the source
instructions in the critical paths are not unnecessarily delayed,
resulting in longer schedule length. This also conforms to the
priority assignment in the instruction scheduling phase of most
production compilers, like GCC. For example, the critical path
in the schedule of Figure 1b involves accumulations into a.
Since division operation has the highest latency, we assign
high initial priority to labels {a,b,c,d,f}. Among these, LARS
chooses b as the seed label, since it interacts with the least
number of non-live labels (Figure 4b); the rationale behind
this choice is discussed in Section III-E2.

Once a label is made live, we check if any unblocked
instruction becomes fireable. If so, the algorithm fires/executes
it, and appends it to the final reordered schedule. Otherwise,
a cost tuple 〈t1, t2, . . . , tk〉 is constructed for each non-live
label, the elements of which represent the interaction of the
label with the already-live labels, and the effect of making that
label live on the current unblocked statements. Element ti has
higher priority than tj if ti appears before tj in the tuple. ti(T )
denotes the value of element ti in the cost tuple T . Similarly,
ti(l) denotes the value of element ti in the cost tuple of
label l. Cost tuple comparison is based on the lexicographical
ordering, i.e., for two tuples Ta and Tb,

Ta > Tb ⇔
k

∃
i=1

(
i−1
∀

j=1
(tj(Ta) = tj(Tb)) ∧ ti(Ta) > ti(Tb))

Section III-E2 describes the cost tuple in detail. The labels
with most profitable (i.e., greatest) cost tuple are assigned
highest priority, and are iteratively made live till one or more of
the unblocked instructions becomes fireable. In our example,
none of the unblocked instructions become fireable when the
seed label b is made live, and more labels need to be made
live in order to fire any instruction. Figure 4b shows the
interaction between the live label b, and the non-live labels
{a,c,e} that appear with b in instructions {2,3}, i.e., their live
range interferes with b. This interaction is captured by one of
the elements, say tp, in the cost tuple: tp(a) = 2 since the
live range of a interferes with b in two instructions, whereas
tp(c) = tp(e) = 1, since the live ranges of c and e interfere
with b in only one instruction. Other elements in all the cost

tuples being equal, labels a,c,e will have higher priority over
other non-live labels due to tp, and consequently one of these
three labels will be added to the live set next; LARS picks a
to be added to the live set, since tp(a) > tp(c,e).

Once a is live, instruction 2 can become fireable if c is made
live next. When recomputing the cost tuple for the non-live
labels, this firing potential of c is accounted for in its cost
tuple by one of the elements, say tf . Element tf is positioned
in the cost tuple so that it has higher priority than tp, giving c
higher priority over other non-live labels. Therefore c is made
live next, and instruction 2 is fired (Figure 4c). At this point,
making either label d or e live will result in the firing of
exactly one instruction. LARS prioritizes making e live, since
it interacts with fewer non-live labels. Note that by doing so,
LARS has separated the live range of b from that of d.

Once the computation reaches the state of Figure 4d, making
label q live will enable firing of instruction 8. Instruction 8
has the last uses of labels f and e: once fired, the pseudo-
register assigned to these two labels can be reused to store
other labels. This release potential of q is accounted for by an
element in its cost tuple, say, tr. Element tr is assigned higher
priority than tf in the cost tuple. This results in q getting
higher priority over other non-live labels, and becoming live
in the next step (Figure 4e). When a label is released, its live
range is separated from the non-live labels. LARS thus uses
cost tuples to effectively manage the live set so that the live set
size (and consequently the live range interference) is reduced.

After an instruction is fired, its dependence edges are
removed from DG, which can possibly unblock some instruc-
tions. The cost tuple for each non-live label is recomputed
with a change in the set of live labels, or the set of unblocked
statements. The algorithm terminates when all instructions
in the initial schedule have been fired. The final reordered
schedule is then printed out using appropriate intrinsics for
multi-core CPUs. Algorithm 1 sketches out the high-level
reordering algorithm.

D. Adding Instructions to Reordered Schedule

We say that an instruction Ia interlocks with a previously
fired instruction Ib, if there is a true dependence from Ib to Ia,
or both Ib and Ia contribute to the same accumulator [11]. At
any step, if there are several fireable instructions, priority is



1. a = b / c;
2. a += b * e;
3. a += d * c;
4. a += d / f;
5. q = f + e;
6. t1 = d * g;
7. t1 += a * g;
8. r = q * p;
9. m = n * p;
10. t2 = m * r;

(a) Final schedule

1. a = b / c;
2. a += b * e;
3. a1 += d * c;
4. a1 += d / f;
5. q = f + e;
7. t1 = d * g;
6. t1 += (a + a1) * g;
8. r = q * p;
9. m = n * p;
10. t2 = m * r;

(b) Final schedule with shadows

Fig. 5: Example: Using shadows to avoid interlocks

given to the one that has minimum interlocks with the recently
scheduled instructions. For example, at the stage of Figure 4e,
if t1 and g are made live, instructions 5 and 6 become fireable
simultaneously. However, the previously fired instruction 4
interlocks with 5 on label a. Therefore, 6 is scheduled before 5
(Figure 5a). If all fireable instructions have the same degree of
interlock, we fire them in their order in the original schedule.
This provides the scheduling phase of the backend compiler
with opportunities to exploit ILP [11].

If instructions Ia and Ib interlock due to the same ac-
cumulation output, we can resolve the interlock by register
renaming [17], a technique often used by both compilers and
the hardware to remove false dependences and improve ILP.
When firing the instruction Ia, we check if it interlocks due
to the accumulation output with any of the k previously fired
instructions, where k is a code generator parameter, which
we term interlock window size. If it does, then we replace
the accumulator in Ia with its shadow, which will act as a
partial accumulator. The shadow accumulator is appropriately
initialized to the identity of the accumulation operator (e.g.,
0 for addition/subtraction, 1 for multiplication), and its value
will be added to the actual accumulator before the subsequent
use of the accumulation output. There will be at most k
shadows per accumulator, after which they will be cyclically
reused. By register renaming, we remove the dependence
between instructions that are less that k hops apart in the
final schedule, thereby improving ILP. For example, in the
reordered schedule of Figure 5a, the true dependences due
to the accumulation output a in instructions 1–4 limits the
achieved ILP. We can increase ILP by creating a shadow
accumulator a1, and collecting partial accumulations from
alternate instructions into it, as shown in Figure 5b. The partial
contribution from the shadow a1 is added to a before its
subsequent use in instruction 6.

E. Adding Labels to Live Set

1) Assigning initial priority to labels: No labels are initially
live. To start the reordering, we have to choose the first non-
live seed label, and make it live. In order to determine the seed
label, we assign an initial priority to all labels. This priority
is based on the concept of earliest starting time. For each
instruction n in the initial schedule, the earliest starting time,
EST (n), can be computed based on the pipeline latencies of
the underlying architecture [18].

EST (n) = max
i

(EST (pi) + latency(pi)) (1)

Algorithm 1: Reorder (P, k)
Input : P : Initial schedule, k: Interlock window size
Output: R: Reordered schedule

1 DG← dependence graph for P ;
2 L← ∅; // set of live labels
3 Sub ← instructions that have no incoming dependences in DG;
4 Sfire ← ∅; // set of fireable instructions
5 compute EST(ni) for each instruction ni using equation 1;
6 for each label l in P do
7 compute initial priority of l using EST of instructions (Sec. III-E1)
8 while not all instructions in P are fired do
9 M ← ∅; // list of cost tuple for each non-live label

10 for each label l 6∈ L such that l occurs in an instruction in Sub do
11 M ←M ∪ Create-Tuple (l, L, Sub ); (Algo. 2)
12 Adaptive-Custom-Sort (M ) (Sec. III-F);
13 add the most profitable label in sorted M to L;
14 for each instruction s in Sub do
15 if all the labels of s are in L then
16 Sfire ← Sfire ∪ s;
17 Sub ← Sub \ s;
18 while Sfire 6= ∅ do
19 remove an instruction s ∈ Sfire that has the least interlocks with the

instructions in R;
20 for each label l in s do
21 if this is the last use of l, remove l from L;
22 if s contributes to an accumulation node t then
23 create a shadow accumulation output if any of the last k

instructions in R also contribute to t;
24 append s to R;
25 remove the dependence edges from s in DG, add instructions with no

incoming dependences in DG to Sub ;

where pi is the ith predecessor of n in DG, and latency(pi)
is the latency of the dependence edge from pi to n.

A source in the DG is a node with no predecessors, and a
sink is a node with no successors. For a path p in DG starting
at source node ns and ending at sink node nt, we define the
path execution time, PET (p) = EST (nt). A critical path
in DG corresponding to V is defined as the source-to-sink
path with the highest PET . There can be more than one
critical paths in the program. In most instruction scheduling
algorithms, the first scheduled instruction (seed instruction) is
the source instruction in the critical path [18], [11].

If an instruction n occurs in k source-to-sink paths
{p1, p2, . . . , pk} in the DG, we can compute a cumulative cost
for n, similar to the one defined in [11], as max

1≤r≤k
(PET (pr)−

EST (n)). Thus, the source in the critical path will have
the highest cumulative cost, and the instructions closer to
the source instruction in relatively longer paths in the DG
will have higher cumulative costs than other instructions. The
labels occurring in an instruction with higher cumulative cost
must be assigned a higher priority, so that such instructions
are scheduled with urgency. The initial priority Pl of a label
l is therefore set to max

i
{cumulative cost(ni)}, where ni

represents all instructions in which label l appears.
2) Creating a cost tuple for each label: To model the

profitability of making a non-live label l live, we capture
its impact on the current set of unblocked instructions and
its interaction with the live labels ∈ L using the following
metrics:
− Fire potential (Fpot ): The fire potential of label l is the

number of instructions that become fireable upon making
l live. If there are k unblocked instructions that only need
l to become live in order to become fireable, then the fire



Algorithm 2: Create-Tuple (l, L, Sub)
Input : L: Set of live labels, l: a label 6∈ L, Sub : Unblocked instructions
Output: T : Cost tuple for l

1 Rpot ← 0; Fpot ← 0; Nlk ← 0;
2 for each s ∈ Sub that becomes fireable when l ∈ L do
3 increment Fpot ;
4 for each t in L that has the last use in s do
5 increment Rpot ;
6 Pl ← the label priority of l based on its initial priority, and the current leading

statement;
7 Nnpaff ← number of labels 6∈ L that have non-zero primary affinity with l;
8 Paff ← cumulative primary affinity of l to the labels ∈ L;
9 Saff ← cumulative secondary affinity of l to the labels ∈ L;

10 T ← 〈Rpot , Fpot , Paff , Saff ,−Nnpaff , Pl〉;
11 return T ;

potential of l is k.
− Release potential (Rpot ): The release potential of l refers

to the number of labels that have their last uses in the
instructions that become fireable when l is made live.

− Cumulative Primary affinity (Paff ): Label l has primary
affinity of strength p with an already live label t if both
l and t occur simultaneously as the labels in exactly p
instructions. The cumulative primary affinity of l is the
sum of its primary affinity with all live labels.

− Cumulative Secondary affinity (Saff ): Label l has sec-
ondary affinity of strength s with an already live label t
if they both have a non-zero primary affinity with exactly
s common labels. The cumulative secondary affinity of l
is the sum of its secondary affinity with all live labels.
Rationale: The release potential of a label reflects its

ability to reduce register pressure directly. Therefore, the label
with highest release potential must always be made live before
others. Making a label with high fire potential live can provide
the compiler with independent instructions to schedule. Also,
even if the fired instructions do not release registers, they
may still be a step in decreasing the remaining uses of their
operands, and towards a consequent release of the registers
occupied by their operands. If a label l has a non-zero primary
affinity with an already-live label t, then the live range of l and
t definitely interfere, and t cannot be released till l becomes
live. Therefore, if label l has a high cumulative primary affinity
with the already-live labels, then we eagerly make l live, so
that we get a step closer to releasing l, and the labels it has
primary affinity with. Similarly, if a label l has a non-zero
secondary affinity with an already-live label t due to a label
m, then the live ranges of both l and t will interfere with m.
Making l live will shrink the live range of m and bring us one
step closer to releasing m.

To help us determine the seed label, we had initialized
the initial priority Pl for each label based on the cumulative
cost of the instructions. Multiple labels along disjoint critical
paths could be initialized with the same priority if those
paths have the same PET . However, when an instruction n
is fired by LARS, the priority of the labels in the instructions
dependent on n must be increased to favor depth-first traversal
of the CDAG containing n. Otherwise, the instructions along
different CDAGs may get unnecessarily interleaved, increasing
the register pressure [12]. Whenever an instruction is fired, the

priority of each label is updated based on the current leading
statement. A statement Si is currently leading if maximum
number of the instructions that it was lowered down to have
been fired. All the non-live labels occurring in the unblocked
instructions corresponding to Si are assigned a higher Pl than
other non-live labels.

The primary affinity of a non-live label l to other non-live
labels is also an important metric. Suppose the label l has a
non-zero primary affinity with r non-live labels. Then, if l is
made live at the current step, it needs to be live until all the r
labels are live as well. For each label l, Nnpaff (l) denotes the
number of non-live labels with which l has non-zero primary
affinity. A label with higher Nnpaff must be penalized, as
making it live may increase live-range interference in future.

The resultant combined metric for each label can be thought
of as a 6-tuple: 〈Rpot , Fpot , Paff , Saff , Pl, −Nnpaff 〉. The
collection of tuples for all labels is then lexicographically
sorted in descending order to rank-order the labels based on
their profitability to be made live. The label that is deemed
most profitable after the rank-ordering is chosen to be added
to the set L. Algorithm 2 depicts the creation of the cost tuple.

F. Adaptivity in LARS
The relative order of the metrics in the tuple affects the

reordering objective. For example, assigning the highest pri-
ority to Rpot followed by Pl would allow an interleaved
execution of two statements only when the interleaving results
in release of registers. This provides us the flexibility to define
multiple sort functions, each acting as an objective function to
determine the sequence in which the labels are added to set
L. In the implementation, we choose the objective function
based on the nature of the computation. For the computations
where the intra-statement reuse is less than half the inter-
statement reuse (e.g., computation of Figure 6e), we order
the metrics as 〈Rpot , Fpot , Paff , Saff , −Nnpaff , Pl〉. This
facilitates interleaving across the statements to reduce register
pressure. However, if the inter-statement reuse is less than one-
third the intra-statement reuse, we order the metrics as 〈Rpot ,
Pl, Fpot , Paff , Saff , −Nnpaff 〉, so that the interleaving across
CDAGs is minimized.

G. Putting It All Together
Algorithm 3 recapitulates the broad steps applied by LARS

to reorder an input program M . The unrolling factors are
applied to M to obtain an unrolled version M ′. The depen-
dence graph is then computed for M ′ (line 4) using which,
multiple permutations {V } of M ′ are created (line 5). The
reordering heuristic is then applied to each of these versions
(line 7). The end goal is to find the fastest amongst all versions,
which is then returned as the final reordered code (lines 8–
11). Appendix A gives a detailed example of using LARS to
reorder the 2D 9-point stencil.

IV. EXPERIMENTAL EVALUATION

Experimental Setup: The experimental results presented
here were obtained on an Intel Xeon Phi and a Skylake i7-
6770K processor. The hardware details are shown in Table



Algorithm 3: End-to-end Algorithm
Input : M : Input program, uf : Unrolling factors
Output: R: Reordered output

1 Tm ←∞;
2 k ← user-specified interlock window size;
3 M ′ ← Unroll (M, uf );
4 G′ ← Dependence-Graph (M ′);
5 {V } ← Create-Permutations (M ′, G′); (Section III-B)
6 for P ∈ {V } do
7 r ← Reorder (P, k);
8 t← execution time of r;
9 Tm ← min (Tm, t);

10 R← faster version between r and the one corresponding to Tm;
11 return R;

Resource Details
Intel multi-core

CPU
Intel core i7-6700K (4 cores, 2 threads/core 4.00 GHz, 8192K
L3 cache)

Intel Xeon phi Intel Xeon Phi 7250 (68 cores, 4 threads/core 1.40GHz,
1024K L2 cache)

TABLE I: Benchmarking hardware

Compiler Flags
gcc -Ofast/Os -fopenmp -ffast-math -fstrict-aliasing -march=core-

avx2/{knl -mavx512f -mavx512er -mavx512cd -mavx512pf} -mfma
-f(no)schedule-insns -fschedule-insns2 -fsched-pressure
-ffp-contract=fast

llvm -Ofast/Os -fopenmp=libomp -mfma -ffast-math -fstrict-aliasing
-march=core-avx2/knl -mllvm -ffp-contract=fast
-pre-RA-sched=”source/list-ilp/list-hybrid/list-burr”

TABLE II: Compilation flags for multi-core and Xeon Phi

I. All benchmark codes are compiled with GCC-7.2.0, and
the version of LLVM from the svn (llvm/trunk 311831). The
compilation flags for both compilers are listed in Table II.
Both GCC and LLVM provide some fine-grain control over the
instruction scheduling passes via the compilation flags: GCC
allows the user to enable or disable the prepass and postpass
instruction scheduler, whereas LLVM provides multiple im-
plementations for the prepass scheduler. With the fine-grain
access to the compiler passes, we can control the effect of the
scheduling passes on the LARS reordered schedule.

Benchmarks: We evaluate the efficacy of LARS on a
wide variety of benchmarks, which can be grouped into
five sets. The first set comprises generalized versions of
computations typically used in iterative processes such as
solving partial differential equations and convolutions [19].
The second set contains smoothers used in HPGMG bench-
mark suite [20]. The third set includes high-order stencil
computations from the ExpCNS Compressible Navier-Stokes
mini application from DoE [21] and the Geodynamics Seismic
Wave SW4 application code [22]. The fourth set comprises
the kernels from Cloverleaf benchmark suite [23]. The final
set contains the tensor contraction kernels CCSD(T) from the
NWChem suite [24]. These benchmarks are listed in Table III.
All benchmarks are double-precision. Note that we evaluate all
compute kernels from Cloverleaf benchmark suite, excluding
the trivial kernels that copy data from one array to another.

Code Generation: The original version (Original) for
each benchmark is as written by application developers, paral-
lelized and vectorized by adding appropriate OpenMP pragma
to the outermost parallel loop, and SIMD pragma to the inner-
most vectorizable loop, but without any explicit loop unrolling.

Benchmark N FPP R

2d25pt 81922 49 2
2d49pt 81922 97 2
2d64pt 81922 127 2
2d81pt 81922 161 2

2d121pt 81922 241 2
3d27pt 5123 53 2

3d125pt 5123 249 2
chebyshev 5123 39 6

7-point 5123 11 2
poisson 5123 21 2

helmholtz-v2 5123 22 7
helmholtz-v4 5123 115 7

27-point 5123 30 2
hypterm 3003 358 13
diffterm 3003 415 11

rhs4th3fort 3003 687 11
derivative 3003 486 10

Benchmark N FPP R

cell-advec 3D 2563 49 16
mom-advec 3D 2563 55 15
acceleration 3D 2563 57 13

ideal-gas 3D 2563 12 4
PdV 3D 2563 98 16

calc-dt 3D 2563 67 11
fluxes 3D 2563 30 12

viscosity 3D 2563 139 9
cell-advec 2D 40962 47 14

mom-advec 2D 40962 41 13
acceleration 2D 40962 38 10

ideal-gas 2D 40962 12 4
PdV 2D 40962 51 13

calc-dt 2D 40962 36 9
fluxes 2D 40962 12 8

viscosity 2D 40962 58 7
sd-t-d1-{1:9} 248 2 3

N: Domain Size, FPP: FLOPs per Point R: Arrays Accessed

TABLE III: Benchmark characteristics

We generate multiple unrolled versions (Unrolled) for each
benchmark by explicitly unrolling all but the innermost loop
by powers of 2, restricting the maximum unroll factor to 8. For
each unrolled version, we generate an accumulation version
with all the additive contributions converted to accumulations
(Accumulation). Corresponding to each unrolled version, we
create a LARS-optimized version (Reordered) as well. At
present, LARS does not autotune for optimal unrolling factors.
The user only needs to specify the unrolling factors in the
pragma (line 6 of Listing 3), and appropriately modify the
increment expression of the computational loop nest (lines 3–
5 of Listing 3). The unrolling of the statements is done by
the preprocessing stage described in Section III-A, usually in
under less than a second. All benchmarks are control-flow-free
and conform to the restrictions described in Section III-A,
and hence LARS is able to parse them without any code
modification. Whenever possible, we set the unrolling factor
along the fastest-varying dimension to 1 to allow efficient vec-
torization by the underlying compiler. Except for the CCSD(T)
kernels, LARS generates a reordered schedule with appropriate
SIMD intrinsics for multi-core CPU and Xeon Phi. We do
not generate accumulation version for CCSD(T) benchmarks,
since their unrolled versions are already in accumulation form.
No other optimization (e.g. tiling) is applied to the reordered
code, in order to get a fair performance comparison with
respect to the unrolled versions. For code generation, the
interlock window size, k, is set to 2. For all benchmarks, the
reordered versions were generated under 15 seconds by LARS.
We check the correctness of each reordered code against
the original version. For all benchmarks, we consider the
theoretical floating-point operations performed by the original
version to compute the GFLOPS for all versions.

Performance Results: Table IV plots the performance of
the original, unrolled, accumulation, and reordered code for
the different benchmark sets. For the convolution kernels, the
reordered version significantly outperforms the original and
unrolled versions over all compilers/architectures, especially
when the order of the computation increases. The order here
refers to the extent of elements read from the center. For



Benchmark GCC on i7-6700K LLVM on i7-6700K GCC on Xeon Phi 7250 LLVM on Xeon Phi 7250
Org Unr Acc Reo Org Unr Acc Reo Org Unr Acc Reo Org Unr Acc Reo

2d25pt 53.74 50.65 54.18 55.11 55.16 51.82 51.42 55.85 68.73 90.19 91.17 95.35 64.55 74.59 87.62 95.71
2d49pt 70.90 70.71 67.96 100.58 75.37 20.09 72.91 99.08 89.79 146.69 144.48 170.76 87.16 114.97 128.73 151.20
2d64pt 66.65 69.20 66.34 112.12 71.67 19.16 64.88 120.62 104.67 167.75 171.94 184.56 92.18 106.47 146.14 191.74
2d81pt 72.18 69.97 66.23 137.36 68.15 18.28 17.90 137.43 109.23 222.13 231.01 278.38 85.74 116.12 195.79 293.93

2d121pt 72.33 68.31 64.98 163.90 25.58 23.48 65.25 175.13 77.42 102.81 293.17 392.13 94.99 106.01 223.98 367.03
3d27pt 37.12 45.71 43.31 52.33 37.66 19.95 42.28 51.38 79.60 104.08 106.78 118.08 87.90 101.23 116.90 147.48

3d125pt 53.01 44.85 55.55 109.02 17.90 17.07 46.99 115.15 146.18 200.65 235.35 354.90 100.03 97.88 217.36 364.21

chebyshev 16.32 17.15 18.13 19.54 16.62 18.08 18.44 19.56 30.54 42.17 40.94 46.70 26.81 45.35 46.54 52.13
7-point 7.35 10.26 10.19 10.46 7.49 10.81 10.53 11.61 18.28 24.11 24.16 24.78 18.37 27.78 27.13 28.88
poisson 14.31 19.09 19.38 19.97 14.56 16.87 17.91 19.80 31.05 41.05 41.54 45.48 28.28 42.41 50.49 57.15

helmholtz-v2 6.67 8.30 8.30 8.64 6.82 7.76 8.13 8.65 15.89 18.46 18.96 19.98 14.36 18.55 19.76 21.81
helmholtz-v4 23.40 24.92 26.27 27.80 24.13 19.05 25.91 27.95 39.61 56.12 50.21 60.87 37.36 33.34 58.44 75.87

27-point 20.24 25.36 25.30 28.75 20.89 25.59 22.13 27.71 42.77 58.41 54.78 62.05 39.57 68.13 69.16 83.39

hypterm 8.77 - 11.86 14.37 8.92 - 11.09 14.72 24.63 - 32.73 42.88 29.36 - 33.38 41.14
diffterm 9.61 - 11.58 14.60 4.79 - 9.90 14.64 32.29 - 39.21 43.73 30.94 - 36.11 44.26

rhs4th3fort 43.63 - 45.22 56.64 32.66 - 40.43 57.83 115.23 - 129.01 159.61 126.28 - 130.21 166.02
derivative 20.14 - 22.95 26.84 24.96 - 25.72 28.26 82.49 - 88.90 101.54 71.93 - 78.17 87.94

cell-advec 3D 4.24 4.24 4.13 4.36 3.95 4.24 4.21 4.36 10.85 9.28 9.17 12.46 8.79 9.67 10.33 13.28
mom-advec 3D 5.42 5.56 5.58 5.84 5.63 5.82 5.77 5.88 14.05 12.66 12.78 16.74 11.88 11.60 13.71 17.81
accelerate 3D 7.82 8.51 8.19 9.63 8.08 8.08 8.13 9.21 15.70 16.58 18.77 22.79 13.77 13.79 19.65 27.83
ideal-gas 3D 6.49 6.34 6.37 6.64 6.58 6.46 6.41 6.65 11.58 12.45 13.95 19.65 8.56 9.44 13.19 19.72

PdV 3D 15.08 15.69 14.91 15.84 15.28 14.85 14.71 15.86 35.44 32.70 35.31 41.56 29.85 36.29 41.91 50.39
calc-dt 3D 14.10 14.98 14.71 15.30 14.31 15.11 15.23 15.45 29.30 30.69 30.69 43.08 28.68 29.42 33.27 47.60
fluxes 3D 5.25 5.71 5.84 5.96 5.33 5.53 5.57 5.92 13.98 14.13 13.91 17.06 12.02 12.13 13.31 18.43

viscosity 3D 37.35 44.93 45.77 50.54 37.80 41.76 43.37 56.57 77.31 83.64 90.76 114.80 64.39 89.66 133.81 179.02

cell-advec 2D 6.42 6.24 6.17 6.70 6.60 6.45 6.17 6.70 12.35 12.52 13.71 15.40 10.52 10.11 11.91 15.83
mom-advec 2D 4.95 4.80 4.91 5.03 4.92 4.77 4.97 5.05 10.63 10.81 11.31 13.29 8.74 8.84 9.93 13.35
accelerate 2D 9.84 9.72 9.83 10.22 9.86 8.25 9.13 10.22 14.77 16.38 22.81 26.54 10.39 8.02 17.91 27.52
ideal-gas 2D 6.78 6.46 6.79 6.81 6.65 6.41 6.71 6.80 11.49 11.53 14.43 19.76 8.00 8.25 13.77 19.87

PdV 2D 12.32 12.39 12.10 12.67 12.42 12.18 11.71 12.58 22.97 26.31 27.21 34.59 19.41 20.98 22.63 34.50
calc-dt 2D 11.69 11.52 11.97 12.31 11.62 11.52 11.71 11.90 23.52 24.64 28.14 33.56 14.93 16.06 21.61 30.47
fluxes 2D 3.79 3.94 3.33 4.05 3.87 3.88 3.78 3.96 5.09 6.00 5.91 7.09 5.68 5.27 7.73 11.23

viscosity 2D 31.67 30.85 31.55 32.44 31.26 19.41 21.66 32.46 46.09 49.39 54.17 71.44 31.61 34.98 44.87 72.88

sd-t-d1-1 18.55 28.38 - 40.04 7.46 30.80 - 46.28 42.61 55.04 - 69.24 19.76 97.58 - 140.07
sd-t-d1-2 18.01 32.77 - 35.85 7.52 37.74 - 41.46 45.01 60.04 - 91.41 19.95 95.95 - 138.06
sd-t-d1-3 15.19 22.16 - 41.28 7.45 23.92 - 52.87 35.82 82.21 - 178.44 17.06 83.94 - 190.03
sd-t-d1-4 17.64 37.26 - 43.24 7.27 34.08 - 40.68 43.65 84.65 - 111.85 19.33 115.11 - 142.16
sd-t-d1-5 17.91 47.32 - 64.26 7.06 47.02 - 70.78 45.22 127.96 - 201.84 19.25 156.54 - 211.01
sd-t-d1-6 15.27 22.58 - 41.01 7.39 22.96 - 55.74 35.88 82.42 - 180.56 17.04 81.66 - 191.43
sd-t-d1-7 18.82 39.93 - 46.93 7.50 44.07 - 57.39 43.76 85.71 - 113.19 19.59 148.48 - 216.17
sd-t-d1-8 18.23 47.60 - 71.72 7.45 46.73 - 68.62 45.43 130.55 - 203.06 19.54 146.15 - 214.35
sd-t-d1-9 11.17 25.18 - 36.61 6.79 30.09 - 52.83 34.79 83.88 - 148.35 17.66 99.49 - 190.90

Org: original, Unr: unrolled, Acc: accumulation, Reo: reordered

TABLE IV: Performance of the benchmarks (in GFLOPS) on different architectures

example, the 2d21pt kernel benefits the most from reordering,
and it has the highest order, 5. This observation is consistent
with that of Stock et al. [1]. The volume of data read per
point usually increases with an increase in the order for most
of the dense computations, and this can exacerbate the spills in
the unrolled code. LARS exploits associativity to judiciously
reorder the instructions by interleaving computations across
the unrolled statements, thereby reducing the spill volume. The
reordered version also outperforms the accumulation version,
indicating that reordering the instructions after rewriting the
computation in accumulation form is crucial to performance.

LARS outperforms both original and unrolled versions for
the HPGMG smoothers as well, but the performance gains are
lower when compared to the convolution kernels due to two
reasons: (a) LARS leverages operator distributivity in order
to exploit associativity for smoothers, thereby increasing the
computation; (b) the increase in arithmetic intensity (defined
as the FLOPs relative to the memory accesses) with unrolling
is less significant for smoothers, which implies that they are
more bandwidth-bound than convolutions.

For Cloverleaf 3D and 2D benchmarks, the performance

of LARS-reordered code is almost the same (1.0× – 1.13×
for multi-core CPU), or slightly better (1.14× – 1.7× with
GCC on Xeon Phi). This can be mainly attributed to the
nature of the computations in the Cloverleaf suite. As observed
from Table III, each kernel in the Cloverleaf benchmarks
reads from a multitude of arrays, but the computations in
each kernel is scarce. Thus, there is very little reuse to
be exploited via unrolling, and the computation is severely
bandwidth-bound. Both these factors reduce the benefits of
unrolling and reordering. However, the performance results
serve to demonstrate that the reordering done by LARS does
not degrade the performance for such benchmarks.

High-order stencils are becoming commonplace in scientific
simulations, and optimizing them is the current focus of the
HPC community. These high-order stencils can be thought of
as a forest of CDAGs, with high data reuse across the CDAGs.
This abstraction is particularly challenging for a traditional
compiler to optimize, since most of the integrated instruction
schedulers are designed to schedule a single CDAG. With
LARS, we were able to reduce the total memory accesses
per point even with the non-unrolled version, and achieve a



1.22× – 3× speedup over the base version.
A similar performance trend is observed for CCSD(T)

tensor contractions. Since each contraction has a loop nest of
depth 7 and loop unrolling in tensor contractions is a research
problem in itself [25], we fix two loops as the unrolling
candidates. Since the computation is an accumulation, the
unrolling candidates are chosen to favor the reuse of the output
element. Unrolling greatly improves the performance, and we
get a 1.09× – 2.26× speedup with simple reordering of the
instructions to reduce the memory accesses.

Appendix B presents an analysis of the generated assembly
code on Xeon Phi 7250, confirming that the LARS-reordered
version incurs far fewer memory accesses than the unrolled
version.

V. RELATED WORK

The interplay of register allocation and instruction schedul-
ing has been studied by a body of prior research [26], [7],
[8], [9], [27], [11]. Sethi et al. [12] propose an algorithm to
translate an expression tree into machine code using optimal
number of registers. The algorithm does not extend to CDAGs.
Goodman and Hsu [11] present a prepass scheduler that
is register-pressure sensitive. Motwani et al. [26] show that
integrated register allocation and instruction scheduling is NP-
hard, and propose a combined heuristic that provides relative
weights for controlling register pressure and instruction paral-
lelism. Other works attempt to combine the data dependence
graph on which instruction scheduling is performed and in-
terference graph on which register allocation is performed,
and then perform instruction scheduling and register allocation
on the unified graph. Berson et al. [9] use register reuse
DAGs to identify instructions whose parallel scheduling will
require more resources than available, and optimize them
to reduce their resource demands. Pinter [7] describes an
algorithm that colors a parallel interference graph to obtain a
register allocation that does not introduce false dependences,
and therefore exploits maximal parallelism. Norris et al. [8]
propose an algorithm that constructs an interference graph
with all feasible schedules, and then remove interferences
for schedules that are to be least likely followed. All these
approaches are designed for in-order or VLIW processors, and
an experimental evaluation by Valluri et al. [28] show that
integrated efforts rarely benefit OoO processors.

In the context of OoO processors, Barany and Krall
[27] propose an optimistic integrated approach that performs
prepass scheduling, and then rearranges instructions to miti-
gate register pressure during register allocation. However, the
rescheduling is done from the local perspective of a single
instruction, and tends to reduce ILP. Silvera et al. [29] propose
an instruction reordering framework for dynamic issue hard-
ware that takes the output schedule after prepass scheduling,
and reorders the instructions within the instruction window to
reduce register pressure. With such constraints on reordering,
their method will not be able to do aggressive reordering that
reduces register pressure while maintaining ILP, as done by
LARS (Appendix A). While Barany and Krall [27] note that

their rescheduling may not reduce register pressure as much
as a register-pressure-driven scheduler, both they and Silvera
et al. [29] emphasize the importance of reducing register spills
in OoO processors.

Stock et al. [1] leverage retiming to convert a gather-
gather stencil into a scatter-gather stencil, thereby relieving
register pressure. However, their approach is only applicable
to regular stencils. In contrast, our work proposes a general-
ized reordering strategy that uses affinity between labels and
unblocked instructions to reduce register pressure; it is not
restricted to the cases that Stock et al. handle. Domagala et
al. [30] present a register allocation strategy that is cognizant
of loop unrolling and instruction scheduling. However, it does
not consider associative reordering to improve register alloca-
tion/instruction scheduling. Veras et al. [31] identify instances
where manual instruction selection and scheduling can boost
the performance of compute-bound numerical kernels like
matrix-matrix multiplication, and propose a technique that uses
custom macro intrinsics to generate efficient assembly for such
numerical codelets. Even though their work, like ours, high-
lights the same performance issues with instruction scheduling
of GCC, their approach is only suitable for numerical kernels
that are tiled to expose repeated application of a compact
codelet. Recently, Rawat et al. [16] proposed an associative
reordering strategy targeting stencil computations on GPU.
They represent the stencil computation as a DAG of expression
trees, and then generalize the Sethi-Ullman algorithm [12] to
schedule the DAG with the objective of minimizing register
pressure. In contrast, we present a more generalized scheme
that does not rely on any special abstraction of computation,
and is adapted to generate efficient reordered code for multi-
core CPUs.

VI. CONCLUSION

Register spills and low performance are a problem when
compiling scientific codes with high degree of many-to-
many reuse. We present LARS, a list-based, adaptive, register
pressure driven source-level scheduler, that leverages operator
associativity to reorder instructions to reduce register pressure.
The metrics used by LARS are powerful enough to exploit
patterns in the computation, and general enough to benefit
a variety of input applications. We demonstrate the usability
of LARS, and the effectiveness of its reordering heuristics,
over several benchmarks using multiple compilers and archi-
tectures.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback and
suggestions that helped improve the paper. This work was
supported in part by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security
Administration, and by the U.S. National Science Foundation
(NSF) through awards 1440749 and 1513120.



REFERENCES

[1] K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ra-
manujam, and P. Sadayappan, “A framework for enhancing data reuse
via associative reordering,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’14. New York, NY, USA: ACM, 2014.

[2] G. J. Chaitin, “Register allocation & spilling via graph coloring,” in Pro-
ceedings of the 1982 SIGPLAN Symposium on Compiler Construction,
ser. SIGPLAN ’82. New York, NY, USA: ACM, 1982.

[3] M. Poletto and V. Sarkar, “Linear scan register allocation,” ACM Trans.
Program. Lang. Syst., Sep. 1999.

[4] “Semantics of Floating Point Math in GCC,” 2007. [Online]. Available:
https://gcc.gnu.org/wiki/FloatingPointMath

[5] P. Basu, M. Hall, S. Williams, B. V. Straalen, L. Oliker, and P. Colella,
“Compiler-directed transformation for higher-order stencils,” in Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE Interna-
tional, May 2015.

[6] P. Suriana, A. Adams, and S. Kamil, “Parallel associative reductions in
halide,” in Proceedings of the 2017 International Symposium on Code
Generation and Optimization, ser. CGO ’17. Piscataway, NJ, USA:
IEEE Press, 2017.

[7] S. S. Pinter, “Register allocation with instruction scheduling,” in Pro-
ceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, ser. PLDI ’93. New York, NY,
USA: ACM, 1993.

[8] C. Norris and L. L. Pollock, “A scheduler-sensitive global register
allocator,” in Supercomputing ’93. Proceedings, Nov 1993.

[9] D. A. Berson, R. Gupta, and M. L. Soffa, “Integrated instruction
scheduling and register allocation techniques,” in Proceedings of the
11th International Workshop on Languages and Compilers for Parallel
Computing, ser. LCPC ’98. London, UK, UK: Springer-Verlag, 1999.

[10] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet,
A. Rountev, and P. Sadayappan, “Resource conscious reuse-driven tiling
for GPUs,” in Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation, ser. PACT ’16. ACM, 2016.

[11] J. R. Goodman and W.-C. Hsu, “Code scheduling and register allocation
in large basic blocks,” in Proceedings of the 2Nd International Confer-
ence on Supercomputing, ser. ICS ’88. New York, NY, USA: ACM,
1988.

[12] R. Sethi and J. D. Ullman, “The generation of optimal code for
arithmetic expressions,” J. ACM, Oct. 1970.

[13] L. Gan, H. Fu, W. Xue, Y. Xu, C. Yang, X. Wang, Z. Lv, Y. You,
G. Yang, and K. Ou, “Scaling and analyzing the stencil performance on
multi-core and many-core architectures,” in 2014 20th IEEE Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), Dec
2014.

[14] C.-M. Chang, C.-M. Chen, and C.-T. King, “Using integer linear
programming for instruction scheduling and register allocation in multi-
issue processors,” Computers and Mathematics with Applications, 1997.

[15] A. V. Aho, S. C. Johnson, and J. D. Ullman, “Code generation for
expressions with common subexpressions,” J. ACM, vol. 24, no. 1, pp.
146–160, 1977.

[16] P. S. Rawat, A. Sukumaran-Rajam, A. Rountev, F. Rastello, L.-N.
Pouchet, and P. Sadayappan, “Register optimizations for stencils on
GPUs,” in Proceedings of the 23nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’18.
ACM, 2018.

[17] J. E. Smith and A. R. Pleszkun, “Implementing precise interrupts in
pipelined processors,” IEEE Trans. Comput., May 1988.

[18] V. Sarkar, M. J. Serrano, and B. B. Simons, “Register-sensitive selection,
duplication, and sequencing of instructions,” in Proceedings of the 15th
International Conference on Supercomputing, ser. ICS ’01. New York,
NY, USA: ACM, 2001.

[19] P. Micikevicius, “3D finite difference computation on GPUs using
CUDA,” in Proceedings of 2nd Workshop on General Purpose Pro-
cessing on Graphics Processing Units, ser. GPGPU-2. ACM, 2009.

[20] “High-Performance Geometric Multigrid,” https://hpgmg.org/, 2016.
[21] “ExaCT: Center for Exascale Simulation of Combustion in Turbulence:

Proxy App Software,” https://exactcodesign.org/proxy-app-software/,
2013.

[22] “Seismic Wave Modelling (SW4) - Computational Infrastructure for
Geodynamics,” https://geodynamics.org/cig/software/sw4/, 2014.

[23] A. C. Mallinson, D. A. Beckingsale, W. P. Gaudin, J. A. Herdman, J. M.
Levesque, and S. A. Jarvis, “Cloverleaf: Preparing hydrodynamics codes
for exascale,” 2013.

[24] “NWChem Download,” 2017. [Online]. Available: http://www.
nwchem-sw.org/index.php/Download

[25] W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, and G. Agrawal, “Op-
timizing tensor contraction expressions for hybrid cpu-gpu execution,”
Cluster Computing, Mar 2013.

[26] R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen, “Combining register
allocation and instruction scheduling,” Stanford, CA, USA, Tech. Rep.,
1995.

[27] A. Krall and G. Barany, “Optimistic integrated instruction scheduling
and register allocation,” ser. CPC ’10. John Wiley & Sons, Ltd, 2010.

[28] M. G. Valluri and R. Govindarajan, “Evaluating register allocation and
instruction scheduling techniques in out-of-order issue processors,” in
1999 International Conference on Parallel Architectures and Compila-
tion Techniques, 1999.

[29] R. Silvera, J. Wang, G. R. Gao, and R. Govindarajan, “A register
pressure sensitive instruction scheduler for dynamic issue processors,”
in Proceedings 1997 International Conference on Parallel Architectures
and Compilation Techniques, Nov 1997.

[30] L. Domagala, D. van Amstel, F. Rastello, and P. Sadayappan, “Register
allocation and promotion through combined instruction scheduling and
loop unrolling,” in Proceedings of the 25th International Conference on
Compiler Construction, ser. CC 2016. New York, NY, USA: ACM,
2016.

[31] R. Veras, D. T. Popovici, T. M. Low, and F. Franchetti, “Compil-
ers, hands-off my hands-on optimizations,” in Proceedings of the 3rd
Workshop on Programming Models for SIMD/Vector Processing, ser.
WPMVP ’16. New York, NY, USA: ACM, 2016.

https://gcc.gnu.org/wiki/FloatingPointMath
https://hpgmg.org/
https://exactcodesign.org/proxy-app-software/
https://geodynamics.org/cig/software/sw4/
http://www.nwchem-sw.org/index.php/Download
http://www.nwchem-sw.org/index.php/Download


APPENDIX A
EXAMPLE: LARS IN ACTION

We demonstrate the power of LARS by using it to reorder
a Jacobi stencil computation [1]. We assume that the interlock
window size is 1. The computation has only inter-statement
reuse, and the cost-tuple for labels are sorted as described in
Section III-F.

Figure 6e shows a 4-way unrolled version of the 2D 9-
point Jacobi stencil. We assume that the coefficients in the
stencil are literals, and all the input contributions to outputs
are additive. There are 4 expression trees, each corresponding
to the computation of a single output point, and there is
significant reuse between these trees: two consecutive output
points reuse 6 input values, and the output points two hops
away reuse 3 input values. For the ease of description, let us
assume that each input (output) point in Figure 6e is assigned
an integer identifier which starts from 1, and is incremented
during the lexicographical scan, going from left-to-right, top-
to-bottom. We identify an input or output label as iv or ov ,
respectively, where v is its identifier. All the labels have the
same initial priority.

LARS starts by scheduling the solo contributions from the
inputs i1, i7 and i13 that contribute to o1, since these labels
can be immediately released (Figure 6a). Next, i2 is made live,
since it has firing potential of 1, and has the lowest primary
affinity to other non-live labels. Now, making o2 live will
release i2 (Figure 6b). i14 is made live next, as it will be
released after making its contributions to o1 and o2. i8 will be
made live next, forcing o3 to become live in the next step. At
this point, we make i3 live, and it contributes to three already-
live output labels (Figure 6c).

LARS follows this pattern to progress to the schedule shown
in Figure 6d, and ultimately that of 6e. At each step, we had
at most three output points, that had high secondary affinity
to each other, live consecutively. Also, we made exactly one
input point live, which contributed to all the live output points,
and was immediately released. Therefore, irrespective of the
degree of unrolling, the maximum register pressure for the
schedule by LARS will be 4.

Obtaining such a schedule is difficult with the existing
instruction schedulers. The existing schedulers may interleave
the computation across trees to increase ILP. However, among
multiple interleavings with the same degree of ILP, there will
be only a few that will simultaneously reduce the register
pressure. Finding such interleavings requires more than just
a greedy decision based on a local perspective of register
pressure. LARS is able to find such an interleaving by having
a broader perspective of register pressure based on release/fire
potential, and cumulative primary/secondary affinities.

APPENDIX B
ASSEMBLY CODE ANALYSIS

We perform an analysis of the generated assembly code for
the various versions, and count the number memory accesses
via loads into the ymm/zmm registers in the computational
loop. The numbers for Xeon Phi 7250 are presented in Table

V. One can observe from the data that the reordered version
incurs far lesser memory accesses than the unrolled version,
indicating that the reordering with LARS reduces the number
of spills and reloads.

APPENDIX C
ARTIFACT DESCRIPTION

A. Abstract

The artifact comprises LARS, an automated framework to
perform reordering optimization on straight-line codes; the
algorithmic details of the framework are described in the
SC’18 paper Associative Instruction Reordering to Alleviate
Register Pressure. The artifact will be publicly available for
download from github. The downloaded package comes with
− The source code for the framework
− The benchmarks in the examples/ directory
− Documentation on how to add a new stencil benchmark

in the docs/ directory
− Makefile to compile LARS, and shell scripts to run the

benchmarks and verify the results reported in the paper

B. Description
1) Check-list (artifact meta information):
• Algorithm: Reordering framework for straight-line codes on

CPUs.
• Program: C/C++ input.
• Compilation: g++ with c++11 support (GCC 4.9.2 and 5.3.0

tested).
• Transformations: The framework extracts the statements from

the pragma-demarcated input C/C++ file, performs lowering
transformations on the statements, and then reorders the lowered
statements to enhance data reuse and simultaneously reduce
register pressure.

• Binary: Makefile is included in the package to generate the
executable. Reordered versions generated by the framework are
included for all the benchmarks; the scripts used to generate the
reordered versions are also included.

• Data set: Included in the examples/ directory.
• Run-time environment: Tested on Ubuntu 16.04, and Red Hat

Enterprise Linux Server release 6.7 operating system.
• Hardware: We recommend a linux platform
• Output: GFLOPS for all the input benchmarks.
• Publicly available?: Yes.
2) How software can be obtained (if available): The frame-

work is open-source, and will be available for download from the
git repository https://github.com/pssrawat/LARS. The
downloaded package comprises the source code, the benchmarks, and
the evaluation instructions and scripts. All the files in the repository
are licensed to The Ohio State University.

3) Hardware dependencies: The framework has been tested on
Ubuntu 16.04 and Red Hat Enterprise Linux Server release 6.7.

4) Software dependencies:
− flex version ≥ 2.6.0 (2.6.0 tested)
− bison version ≥ 3.0.4 (3.0.4 tested)
− cmake version ≥ 3.8 for gpucc (3.8 tested)
− Boost version ≥ 1.58 (1.58 tested)
− GCC version ≥4.8.1 with c++11 support to compile the frame-

work (4.9.2 and 5.3.0 tested)
− GCC version ≥ 7.2.0 for benchmarking
− LLVM version ≥ 6.0.0 for benchmarking
5) Datasets: All the benchmarks that are evaluated in the paper

are packaged in the examples/ directory. Additionally, Makefiles
and scripts are included for easy evaluation.

https://github.com/pssrawat/LARS


(a) step 1 (b) step 2 (c) step 3 (d) step 4 (e) step 5

Fig. 6: Steps in instruction reordering with LARS for a 4-way unrolled 2D 9-point Jacobi stencil

Bench. GCC LLVM
Og Unrolled LARS Og Unrolled LARS
A A UF A UF A A UF A UF

2d25pt 55 77 {2,1} 58 {2,1} 67 207 {4,1} 70 {4,1}
2d49pt 141 344 {4,1} 144 {4,1} 153 399 {4,1} 138 {4,1}
2d64pt 201 494 {4,1} 174 {4,1} 213 519 {4,1} 165 {4,1}
2d81pt 269 664 {4,1} 206 {4,1} 281 655 {4,1} 194 {4,1}
2d121pt 429 1064 {4,1} 294 {4,1} 286 2056 {8,1} 763 {8,1}
3d27pt 65 143 {8,1,1} 93 {8,1,1} 71 223 {4,1,1} 88 {4,1,1}
3d125pt 468 1133 {2,2,1} 361 {2,2,1} 277 1019 {4,1,1} 497 {4,1,1}

chebyshev 42 131 {2,2,1} 73 {2,2,1} 50 297 {4,2,1} 127 {4,2,1}
7-point 15 67 {8,1,1} 62 {8,1,1} 26 34 {4,1,1} 32 {4,1,1}
poisson 27 43 {2,1,1} 35 {2,1,1} 36 166 {8,1,1} 102 {8,1,1}

helmholtz-v2 21 62 {4,1,1} 60 {4,1,1} 33 75 {4,1,1} 60 {4,1,1}
helmholtz-v4 74 151 {2,1,1} 111 {2,1,1} 76 266 {4,1,1} 233 {4,1,1}

27-point 36 228 {4,2,1} 99 {4,2,1} 48 131 {4,1,1} 67 {4,1,1}
hypterm 317 - - 268 {1,1,1} 307 - - 214 {1,1,1}
diffterm 345 - - 328 {1,1,1} 440 - - 386 {1,1,1}

rhs4th3fort 632 - - 426 {1,1,1} 327 - - 287 {1,1,1}
derivative 299 - - 223 {1,1,1} 311 - - 290 {1,1,1}

cell-advec 3D 49 92 {2,1,1} 84 {2,1,1} 50 94 {2,1,1} 79 {2,1,1}
mom-advec 3D 61 114 {2,1,1} 60 {1,1,1} 84 118 {2,1,1} 55 {1,1,1}
accelerate 3D 76 150 {2,1,1} 75 {1,1,1} 75 156 {2,1,1} 51 {1,1,1}
ideal-gas 3D 7 12 {2,1,1} 5 {1,1,1} 6 13 {2,1,1} 6 {1,1,1}

PdV 3D 47 86 {2,1,1} 46 {1,1,1} 41 86 {2,1,1} 70 {2,1,1}
calc-dt 3D 44 82 {2,1,1} 71 {2,1,1} 42 77 {2,1,1} 58 {2,1,1}
fluxes 3D 33 120 {2,2,1} 95 {2,2,1} 32 120 {2,2,1} 92 {2,2,1}

viscosity 3D 47 84 {2,1,1} 80 {2,1,1} 50 100 {2,1,1} 80 {2,1,1}
cell-advec 2D 76 143 {2,1} 132 {2,1} 72 139 {2,1} 127 {2,1}

mom-advec 2D 47 164 {4,1} 141 {4,1} 24 163 {4,1} 85 {4,1}
accelerate 2D 42 162 {4,1} 99 {4,1} 40 170 {4,1} 97 {4,1}
ideal-gas 2D 7 12 {2,1} 7 {1,1} 6 13 {2,1} 6 {1,1}

PdV 2D 28 48 {2,1} 42 {2,1} 22 42 {2,1} 38 {2,1}
calc-dt 2D 23 42 {2,1} 39 {2,1} 24 43 {2,1} 34 {2,1}
fluxes 2D 16 50 {4,1} 44 {4,1} 14 50 {4,1} 43 {4,1}

viscosity 2D 23 42 {2,1} 38 {2,1} 28 47 {2,1} 36 {2,1}
sd-t-d1-1 13 76 {4,8} 48 {4,8} 13 76 {4,8} 50 {4,8}
sd-t-d1-2 13 76 {4,8} 48 {4,8} 13 76 {4,8} 48 {4,8}
sd-t-d1-3 15 76 {4,8} 50 {4,8} 16 69 {4,8} 57 {4,8}
sd-t-d1-4 13 82 {4,8} 54 {4,8} 13 76 {4,8} 50 {4,8}
sd-t-d1-5 13 126 {4,8} 93 {4,8} 13 104 {4,8} 62 {4,8}
sd-t-d1-6 15 141 {4,8} 72 {4,8} 16 106 {4,8} 57 {4,8}
sd-t-d1-7 13 82 {4,8} 60 {4,8} 13 76 {4,8} 48 {4,8}
sd-t-d1-8 13 126 {4,8} 93 {4,8} 13 104 {4,8} 73 {4,8}
sd-t-d1-9 12 121 {4,8} 97 {4,8} 18 126 {4,8} 71 {4,8}

A: total memory accesses, UF : unrolling factor along loop dimensions {k,j,i}

TABLE V: Assembly code analysis on Xeon Phi 7250

C. Installation
First clone the artifact source to a local machine:
$. git clone https://github.com/pssrawat/LARS
Then compile the source code to create the executables:
$. cd LARS
$. make all
To run the benchmarks:
$. cd examples
Edit run-benchmarks.sh in examples/ to select appropri-

ate target architecture, and set up paths to the benchmarking compil-
ers. The default has been set for the Skylake i7-6770K processor.

Execute the benchmarking script:
$. ./run-benchmarks.sh

The computed GFLOPS for all the benchmarks will be redirected
to the output file output.txt in the examples/ directory.

D. Evaluation and expected result
The performance for each stencil benchmark in GFLOPS will be

in output.txt after the evaluation script successfully finishes.

E. Experiment customization
The unrolling factors can be changed in the input C/C++ file, and

the reordered versions regenerated by using the reorder.sh script
provided with each benchmark.

The documentation in docs/ folder provides additional details
about adding new benchmarks, and optimizing them with LARS.

https://github.com/pssrawat/LARS

	Introduction
	Background and Motivation
	Instruction Reordering With LARS
	Preprocessing Steps
	Creating Multiple Initial Schedules
	Overview of the Reordering Strategy
	Reordering the computational DAG of Figure 1b

	Adding Instructions to Reordered Schedule
	Adding Labels to Live Set
	Assigning initial priority to labels
	Creating a cost tuple for each label

	Adaptivity in LARS
	Putting It All Together

	Experimental Evaluation
	Related Work
	Conclusion
	References
	Appendix A: Example: LARS in action
	Appendix B: Assembly Code Analysis
	Appendix C: Artifact Description
	Abstract
	Description
	Check-list (artifact meta information)
	How software can be obtained (if available)
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Evaluation and expected result
	Experiment customization


