635 research outputs found

    A refinement-based approach to computational algebra in COQ

    Get PDF
    International audienceWe describe a step-by-step approach to the implementation and formal verification of efficient algebraic algorithms. Formal specifications are expressed on rich data types which are suitable for deriving essential theoretical properties. These specifications are then refined to concrete implementations on more efficient data structures and linked to their abstract counterparts. We illustrate this methodology on key applications: matrix rank computation, Winograd's fast matrix product, Karatsuba's polynomial multiplication, and the gcd of multivariate polynomials

    Certification of programs with computational effects

    Full text link
    In purely functional programming languages imperative features, more generally computational effects are prohibited. However, non-functional lan- guages do involve effects. The theory of decorated logic provides a rigorous for- malism (with a refinement in operation signatures) for proving program properties with respect to computational effects. The aim of this thesis is to first develop Coq libraries and tools for verifying program properties in decorated settings as- sociated with several effects: states, local state, exceptions, non-termination, etc. Then, these tools will be combined to deal with several effects

    Computing Persistent Homology within Coq/SSReflect

    Full text link
    Persistent homology is one of the most active branches of Computational Algebraic Topology with applications in several contexts such as optical character recognition or analysis of point cloud data. In this paper, we report on the formal development of certified programs to compute persistent Betti numbers, an instrumental tool of persistent homology, using the Coq proof assistant together with the SSReflect extension. To this aim it has been necessary to formalize the underlying mathematical theory of these algorithms. This is another example showing that interactive theorem provers have reached a point where they are mature enough to tackle the formalization of nontrivial mathematical theories

    Formalized linear algebra over Elementary Divisor Rings in Coq

    Get PDF
    This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely presented modules over such rings and the uniqueness of the Smith normal form up to multiplication by units. We present formally verified algorithms computing this normal form on a variety of coefficient structures including Euclidean domains and constructive principal ideal domains. We also study different ways to extend B\'ezout domains in order to be able to compute the Smith normal form of matrices. The extensions we consider are: adequacy (i.e. the existence of a gdco operation), Krull dimension ≤1\leq 1 and well-founded strict divisibility

    Certification of Bounds of Non-linear Functions: the Templates Method

    Get PDF
    The aim of this work is to certify lower bounds for real-valued multivariate functions, defined by semialgebraic or transcendental expressions. The certificate must be, eventually, formally provable in a proof system such as Coq. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of inequalities. We introduce an approximation algorithm, which combines ideas of the max-plus basis method (in optimal control) and of the linear templates method developed by Manna et al. (in static analysis). This algorithm consists in bounding some of the constituents of the function by suprema of quadratic forms with a well chosen curvature. This leads to semialgebraic optimization problems, solved by sum-of-squares relaxations. Templates limit the blow up of these relaxations at the price of coarsening the approximation. We illustrate the efficiency of our framework with various examples from the literature and discuss the interfacing with Coq.Comment: 16 pages, 3 figures, 2 table
    • …
    corecore