11 research outputs found

    Wallace Tree Multiplier Designs: A Performance Comparison Review

    Get PDF
    Multiplication process is often used in digital signal processing systems, microprocessors designs, communication systems, and other application specific integrated circuits. Multipliers are complex units and play an important role in deciding the overall area, speed and power consumption of digital designs. This paper presents a comparison review of various Wallace tree multiplier designs in terms of parameters like latency, complexity and power consumption. Keywords: Booth Recoding Algorithm, Carry Look Ahead Adder, Carry Select Adder, Compressors, Ripple Carry Adder, Sklansky Adder, Wallace Tree Multipliers

    Design of Wallace Tree Multiplier with Power Efficient Adiabatic Logic

    Get PDF
    The objective of this project is to design high performance arithmetic circuits which are faster and have lower power consumption using a new adiabatic logic family of CMOS and to analyze its performance for sequential circuits and effects upon cascading. It commencement on evaluation of a computational block before its evaluation phase begins, and quickly performs a final evaluation as soon as the inputs are valid. This adiabatic logic family is best suited to arithmetic circuits because the critical path is made of a long chain of cascaded inverting gates.In this paper we are going to design Wallace Tree Multiplier using full adder structure with adiabatic logic. As the major advantage of this logic which is higher speed and low power consumption is observed upon cascading, it is most suitable for arithmetic circuits

    An Efficient Implementation of Wallace Tree Multiplier

    Get PDF
    In Very large Scale Integration (VLSI) technology, power consumption and speed are the two important constraints for determining the efficiency of the architecture. This paper aspires at declining this parameters of the Wallace tree multiplier with the efficient use of modified Booth encoding and compressors.The proposed architecture is employed in Verilog HDL and it is simulated in Cadence NC Sim and synthesized using Encounter RTL Compiler in 180nm Taiwan Semiconductor Manufacturing Company(TSMC) slow library .The proposed architecture is found to be 42.2% faster than the conventional Wallace tree architecture and the power consumption lowered by 45% as compared to the conventional Wallace Tree

    Towards Optimised FPGA Realisation of Microprogrammed Control Unit Based FIR Filters

    Get PDF
    Finite impulse response (FIR) filter is one of the most common type of digital filter used in digital signal processing (DSP) applications. An FIR filter is usually realised in hardware using multipliers, adders and registers. Field programmable gate arrays (FPGAs) have been widely explored for the hardware realisation of FIR filters using different algorithms and techniques. One such technique that has recently gained considerable attention is the use of microprogrammed control unit (MPCU) in designing FIR filters. In this chapter, we further explore MPCU technique for optimised hardware realisation of digital FIR filter. To evaluate the performance, two different architectures of FIR filter are designed using Wallace tree multiplier. Both the architectures are coded in Verilog hardware description language (HDL). The performance is analysed by evaluating the resource utilisation and timing reports of Virtex-5 FPGA generated by the Synopsys Synplify Pro tool. Based on the implementation results, as compared to conventional design, Wallace tree multiplier using carry skip adder (CSKA) provides optimal digital FIR filter

    Designing a Novel High Performance Four-to-Two Compressor Cell Based on CNTFET Technology for Low Voltages

    Get PDF
    Compressor cell is often placed in critical path of multiplier circuits to perform partial product summation. Therefore it plays a significant role in determining the entire performance of multiplier and digital system. Respecting to the necessity of low power design for portable electronic, designing a low power and high performance compressors seems to be a good solution to overcome of these problems for computations. In this paper a novel high performance four-to-two compressor cell is proposed using Carbon Nanotube Field Effect Transistors (CNTFETs) technology. The new cell is based on Majority Function, NOR, and NAND gates. The main advantage of proposed design in comparison with former cells is the ease of obtaining CARRY output by means of Majority function. Simulations have been done with 32nm technology node using Synopsys HSPICE software. Simulation results confirm the priority of the proposed cell compared to other state-of-the-art four-to-two compressor cells

    Design and Implementation of Hybrid Multiplier for DSP Applications

    Get PDF
    In recent decades, there has been a consistent reduction in feature sizes in integrated circuit (IC) technology, leading to the need for increased placement of functional circuits on each chip. When it comes to the design of digital circuits, there is a significant focus on hybrid logic. Hybrid logic is highly regarded due to its ability to consume less power while achieving higher efficiency. Hybrid logic circuits have similarities to complementary metal-oxide-semiconductor (CMOS) transistors, yet possess a reduced transistor count while offering enhanced performance and reliability capabilities. This study examines the modeling and implementation hybrid multiplier with of help of hybrid adder. The functionality of adder is determined with the help of hybrid logic producing XOR/XNOR functionalities in single circuit.    The proposed hybrid Multiplier, which incorporates a hybrid Adder, has been successfully designed and implemented using CMOS 45nm technology and Mentor Graphics software the hybrid transistor logic multiplier demonstrates a decrease in total delay of 60% compared to CMOS

    Wallace Tree Multiplier Design and Simulation with DNA Logic Gates

    Get PDF
    The DNA molecule is indubitably the most powerful medium known to code, store information as a means of data storage but till now, DNA molecule has found little use in computing applications. For initiating computing application with DNA molecule, it requires to design DNA transistors which can be utilized to design basic gates to implement Boolean logic. Interestingly, some recent researches have shown that it is very much possible to design a three terminal transistor like device architecture by controlling the flow of RNA polymerase along DNA with specific integrases as inputs. Such approach also initiated successful experimental design and realization of various basic Boolean logic Gates with DNA molecule. Present work theoretically adopted, modified and extended such DNA logic gate concept to execute design simulation of a 4*4 bit Wallace Tree Multiplier circuit. The timing diagram for input and product output has been successfully simulated which authenticate that such DNA logic gate concept can be extended to complex circuits also. The bit error rate and delay factor calculation have been done for the simulated circuit and approximate area analysis has been done. Present simulation model is designed with digital modeling approach in MATLAB Simulink with detail design methodology which will be a valuable step forward towards developing circuit simulator to simulate, analyze and fabricate bio-electronic circuits in near future

    Low-Power, Low-Cost, & High-Performance Digital Designs : Multi-bit Signed Multiplier design using 32nm CMOS Technology

    Get PDF
    Binary multipliers are ubiquitous in digital hardware. Digital multipliers along with the adders play a major role in computing, communicating, and controlling devices. Multipliers are used majorly in the areas of digital signal and image processing, central processing unit (CPU) of the computers, high-performance and parallel scientific computing, machine learning, physical layer design of the communication equipment, etc. The predominant presence and increasing demand for low-power, low-cost, and high-performance digital hardware led to this work of developing optimized multiplier designs. Two optimized designs are proposed in this work. One is an optimized 8 x 8 Booth multiplier architecture which is implemented using 32nm CMOS technology. Synthesis (pre-layout) and post-layout results show that the delay is reduced by 24.7% and 25.6% respectively, the area is reduced by 5.5% and 15% respectively, the power consumption is reduced by 21.5% and 26.6% respectively, and the area-delay-product is reduced by 28.8% and 36.8% respectively when compared to the performance results obtained for the state-of-the-art 8 x 8 Booth multiplier designed using 32nm CMOS technology with 1.05 V supply voltage at 500 MHz input frequency. Another is a novel radix-8 structure with 3-bit grouping to reduce the number of partial products along with the effective partial product reduction schemes for 8 x 8, 16 x 16, 32 x 32, and 64 x 64 signed multipliers. Comparing the performance results of the (synthesized, post-layout) designs of sizes 32 x 32, and 64 x 64 based on the simple novel radix-8 structure with the estimated performance measurements for the optimized Booth multiplier design presented in this work, reduction in delay by (2.64%, 0.47%) and (2.74%, 18.04%) respectively, and reduction in area-delay-product by (12.12%, -5.17%) and (17.82%, 12.91%) respectively can be observed. With the use of the higher radix structure, delay, area, and power consumption can be further reduced. Appropriate adder deployment, further exploring the optimized grouping or compression strategies, and applying more low-power design techniques such as power-gating, multi-Vt MOS transistor utilization, multi-VDD domain creation, etc., help, along with the higher radix structures, realizing the more efficient multiplier designs

    Control Theory in Engineering

    Get PDF
    The subject matter of this book ranges from new control design methods to control theory applications in electrical and mechanical engineering and computers. The book covers certain aspects of control theory, including new methodologies, techniques, and applications. It promotes control theory in practical applications of these engineering domains and shows the way to disseminate researchers’ contributions in the field. This project presents applications that improve the properties and performance of control systems in analysis and design using a higher technical level of scientific attainment. The authors have included worked examples and case studies resulting from their research in the field. Readers will benefit from new solutions and answers to questions related to the emerging realm of control theory in engineering applications and its implementation
    corecore