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Abstract 

Boppana, N V Vijaya Krishna. Ph.D., Department of Electrical Engineering, Wright State 

University, 2022. “Low-Power, Low-Cost, & High-Performance Digital Designs: Multi-

bit Signed Multiplier design using 32nm CMOS Technology” 

 

 

 

 Binary multipliers are ubiquitous in digital hardware. Digital multipliers along 

with the adders play a major role in computing, communicating, and controlling devices. 

Multipliers are used majorly in the areas of digital signal and image processing, central 

processing unit (CPU) of the computers, high-performance and parallel scientific 

computing, machine learning, physical layer design of the communication equipment, etc. 

The predominant presence and increasing demand for low-power, low-cost, and high-

performance digital hardware led to this work of developing optimized multiplier designs. 

Two optimized designs are proposed in this work. One is an optimized 8 x 8 Booth 

multiplier architecture which is implemented using 32nm CMOS technology. Synthesis 

(pre-layout) and post-layout results show that the delay is reduced by 24.7% and 25.6% 

respectively, the area is reduced by 5.5% and 15% respectively, the power consumption 

is reduced by 21.5% and 26.6% respectively, and the area-delay-product is reduced by 

28.8% and 36.8% respectively when compared to the performance results obtained for 

the state-of-the-art 8 x 8 Booth multiplier designed using 32nm CMOS technology with 

1.05 V supply voltage at 500 MHz input frequency. Another is a novel radix-8 structure 

with 3-bit grouping to reduce the number of partial products along with the effective
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partial product reduction schemes for 8 x 8, 16 x 16, 32 x 32, and 64 x 64 signed 

multipliers. Comparing the performance results of the (synthesized, post-layout) designs 

of sizes 32 x 32, and 64 x 64 based on the simple novel radix-8 structure with the 

estimated performance measurements for the optimized Booth multiplier design 

presented in this work, reduction in delay by (2.64%, 0.47%) and (2.74%, 18.04%) 

respectively, and reduction in area-delay-product by (12.12%, -5.17%) and (17.82%, 

12.91%) respectively can be observed. With the use of the higher radix structure, delay, 

area, and power consumption can be further reduced. Appropriate adder deployment, 

further exploring the optimized grouping or compression strategies, and applying more 

low-power design techniques such as power-gating, multi-Vt MOS transistor utilization, 

multi-VDD domain creation, etc., help, along with the higher radix structures, realizing 

the more efficient multiplier designs.  
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1 Introduction 

1.1 Digital Multiplier 

Addition and Multiplication are the most often used elemental components of 

digital computing devices such as DSP, microprocessor, etc. Multiplier is the most used 

computer arithmetic after addition and subtraction. DSPs use multipliers for frequently 

used computationally intensive applications such as filtering: finite impulse response 

(FIR) filter, infinite impulse response (IIR) filter, and adaptive filters of types of least 

mean squares (LMS) filter and recursive least mean squares (RLS) filter; convolution: 

linear and circular convolution, Fast Fourier Transform (FFT), audio/video codecs etc. 

High performance computer hardware, CPUs, and GPUs, for scientific computing rely 

majorly on use of these fundamental digital arithmetic. Digital signal processors spend 

most of the time multiplying and requires more chip area of multipliers to meet the 

performance requirements. Multipliers often contributes towards critical path delay which 

in turn effects the throughput in case of pipelined designs and consumes more power in 

applications such as multimedia and DSP. Demand for low power consuming portable 

computing and communication devices such as smart watches, IoT devices, mobile 

phones, laptops, PCs etc., comprise of signal processing algorithms and other 

multiplication intense algorithms, has been increasing. Specifically, the global market for 

wireless portable medical devices is going to see a huge growth in next five years. 

According to the market research report [1], “The Global Portable Medical Devices 
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Market is estimated to be USD 38.1 Bn in 2021 and is expected to reach USD 

68.24 Bn by 2027, growing at a CAGR of 10.2%.”, and according the report [2], “Global 

portable medical devices market will reach $99.89 billion by 2030, growing by 9.8% 

annually over 2020-2030 owing to the rise in demand for portable medical devices, 

increase in geriatric population, growing incidences of chronic diseases, increasing 

government support, rising R&D investment and technological advancement.”. “The 

global wearable medical devices market size was valued at USD 16.6 billion in 2020. It is 

expected to expand at a compound annual growth rate (CAGR) of 26.8% from 2021 to 

2028. The growth of industries such as home healthcare and remote patient monitoring 

devices is anticipated to influence market growth. In addition, increasing focus on fitness 

and a healthy lifestyle orientation are also expected to impact the market.” [3] with the 

revenue forecast in 2028 as USD 111.9 billion. The importance of need for inventing 

multiplier algorithms is supported by the statement “At least one good reason for 

studying multiplication and division is that there is an infinite number of ways of 

performing these operations and hence there is an infinite number of PhDs (or expenses-

paid visits to conferences in the USA) to be won from inventing new forms of multiplier.” 

by Alan Clements in the year 1986.  

1.2 Research motivation and objective 

As the usage of the digital hardware is getting increased, digital hardware become 

ubiquitous and a part of the gadgets, appliances, or vehicles used by and for human. With 

the advancements in chip manufacturing technologies such as 10nm, 7nm, and 5nm 

nodes, the density of the transistors is increasing and hence the power dissipation. The 

chip manufacturing technologies are getting matured, and the node sizes are tending to 
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approach the atomic sizes. With billions of people using multiple digital devices and a 

huge number of digital devices deployed, for the direct use or for the indirect use, for the 

people, and the advancements of new technologies such as digital health, Inter-of-Things 

(IOTs), etc., the demand for the digital devices with a combination of one or more 

performance attributes and cost attributes such as low-area, low-power, and high-speed 

has been increasing. Low-power digital designs are in great demand for biomedical signal 

processing. This work focuses on finding the solutions for low-cost and high-speed 

designs at algorithmic level instead of exploring for an advanced node technology.  

The objective of this work is to designing low-power, low-cost, and high-speed 

signed integer multipliers. The research is started with the best algorithm, Booth 

algorithm, for the signed number multiplication either to optimize the existing algorithm 

or to find new architectures. The objective includes designing the optimized algorithms 

using 32nm CMOS technology, performing synthesis, generating the post-layout, and 

comparing the performance of the modified or proposed designs with the state-of-the-art 

designs.   
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2 Literature Review 

2.1 Digital Multiplier 

This and the following subsection of this chapter presents the summary of the 

literature study on multipliers with an emphasis on signed Booth multiplier algorithms. 

An extensive work on optimization of multiplication circuits has been performed [4], [5] 

and is continuing. Standard binary multiplication uses repeated shift and accumulate 

routine. Therefore, the mechanisms to improve the multiplier speed involves dealing with 

the combination of the following process: partial product generation (PPG) & Partial 

product reduction (PPR), and acceleration of the accumulation of the shifted partial 

products (PP). Smaller number of PPs require lesser number of resources to build and 

hence reduces the design complexity, design area, and time & power required for the 

accumulation process, i.e., minimization of power-delay product (PDP) and power-delay-

area (PDA) product which is also known as energy-area product (EAP). According to [5], 

study of various implementations of shift/add multiplications leads to a conclusion to 

come up with two ways to improve the speed of intrinsic multi-operand addition: high 

radix multipliers to reduce the number of operands to be added, and tree and array 

multipliers to compose multi-operand adders to minimize latency and/or maximize the 

throughput.  

The following notation adapted from [5] is used in this discussion of 

multiplication algorithms:  
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𝑋        Multiplicand                    𝑥𝑛−1𝑥𝑛−2…𝑥1𝑥0 

( 2.1 ) 

𝑌        Multiplier                        𝑦
𝑛−1

𝑦
𝑛−2

…𝑦
1
𝑦
0
 

( 2.2 ) 

𝑃        Product (𝑥 ×  𝑦)             𝑝
2𝑛−1

𝑝
2𝑛−2

…𝑝
1
𝑝
0
 

( 2.3 ) 

2.2 Multiplier Architectures 

Various binary multiplier architectures such as array and tree multipliers for 

unsigned multiplication and the optimized booth algorithms for signed multiplication are 

discussed in this section.  

2.2.1 Array Multiplier  

An array multiplier is a combinational circuit in the shape of parallelogram used 

for multiplying two binary numbers, multiplicand (x) and multiplier (y), by using an 

array of full adders (FA) and half adders (HA) employed in simultaneous addition of the 

product terms generated by an array of AND gates. An example of binary multiplication 

is shown in Figure 1.  

 

 

Figure 1. Example of a binary multiplication 
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An array multiplier has a simple structure and is designed by placing the FA and 

HA blocks horizontally, row-wise, and vertically, column-wise. Hence, the structure is 

more compatible to modify to pipeline structure, smaller, and requires less design time. 

Rows of PPs and adders are treated as stages. All stages work parallelly by processing the 

respective partial products before each adder while carry-out propagating to the next row. 

Critical path is the limiting factor in non-pipelined structure to achieve high speed or 

throughput. As highlighted in Figure 2 with bold line, critical path has vertical and 

horizontal parts with similar delay contributions in both directions by the gate delays and 

adder delays. The worst-case delay of the structure is proportional to the width of the 

multiplier i.e., for an n-bit by n-bit array multiplier the delay is nearly equal to the two 

times the number of full adders in a row or a slanted column. Hence, the width of an 

array multiplier limits the speed.  
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2.2.2 Tree Multiplier [6] 

Unlike the generation of PPs and accumulating the PPs in a regular array 

multiplier, tree structure shown in Figure 3 deploys number of full adders, each one as a 

3:2 compressor, to reduce the three input bits to two output bits: sum bit and carry out bit. 

A full adder acts like a compressor or as an encoder by converting three binary inputs to 

two encoded binary output with a compression factor of 1.5. The advantage of employing 

the 3:2 compressors in the tree structure is that it does not involve longer carry 

propagation along multiple stages and hence this process is faster than the conventional 

way of multiplication. Summands are grouped in each step to reduce, and the process of 

 

Figure 2. 4-bit x 4-bit Array Multiplier 
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grouping and compression continues until only two numbers remain. Total time of adding 

to the last step is proportional to the logarithm of the number of summands. 

 

2.2.2.1 Wallace Tree Multiplier (WTM) [7] 

Wallace tree structure using carry-save adders to sum the multiplicand-multiples 

in parallel is shown in Figure 4. A carry save adder takes three binary inputs and yields 

two binary outputs. The advantage of the Wallace tree multiplier is its tree like structure 

with the carry save adders which ensures less delay due to the reduced number of logic 

levels. The disadvantage of this structure is its complex structure to design the layout and 

very high hardware requirement.  

 

Figure 3. 4-bit x 4-bit Tree Multiplier [6] 
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The essential feature of Wallace tree architecture is to find the final product using 

least number of possible steps. Hence, at each step maximum number of bits, shown as 

solid dots in [8], are covered in each step vertically to compress using half adder to 

encode two bits and full adder to encode three bits. This process is illustrated in Figure 5. 

Any bits uncovered, groups of two or three, are transferred to the next stage without any 

further processing. As mentioned earlier, half adder acts like a 2:2 compressor and full 

adder like a 3:2 compressor. The steps are continued until only two or a smaller number 

of bits remaining at each bit position at the end of the completion of a step. All the 

compressions are carried out in parallel at each step. At each step, the lone bit on the least 

significant bit (LSB) positions or on the most significant bit (MSB) positions are 

transferred down to the next step without any processing. 

 

Figure 4. Wallace Tree Multiplier using Carry Save Adders [6] 
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Sum and carry out output bits obtained from the full adder in the current step are 

depicted using a diagonal line joining two solid dots in the next stage. Similarly, the two 

output bits of the half adder are shown in the next stage using an inclined solid line of 

joining two circles enclosing the respective bit of a partial product, solid dot. Recursive 

equations used to determine the height of the 𝑗𝑡ℎ reduction stage, 𝜔𝑗, where 𝑗 starts from 

0, are shown below [9] using equations ( 2.4 ) and ( 2.5 ).  

 

Figure 5. Dot Diagram for an 8-bit x 8-bit Wallace Tree Multiplier [8] 
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𝜔0 = 𝑁 

( 2.4 ) 

𝜔𝑗+1 = 2 ∙ ⌊
𝜔𝑗

3
⌋ + 𝜔𝑗  𝑚𝑜𝑑 3 

( 2.5 ) 

 In the dot diagram shown in Figure 5 for an 8 x 8 Wallace multiplier, four 

reduction stages can be observed with heights of 6, 4, 3, and 2 respectively. And, the total 

digital hardware required for the multiplication includes 64 AND gates, 1 OR gate, 38 3:2 

compressors, 15 2:2 compressors, and 10-bit carry propagation adder (CPA). The number 

of 2:2 compressors required are either equal or greater than N and often much greater 

than N. Given the number of bits of operands, N, and calculating the number of stages of 

reduction to reduce the PP matrix from N-rows to 2-rows, S, the number of 3:2 

compressors and the size of the final CPA adder can be determined by the following 

criteria [10] shown using equations ( 2.6 ) to ( 2.10 ).  

3 ≤ 𝑁 ≤ 5 

(3,2) counters = 𝑁2 − 4 ∙ 𝑁 + 3 + 𝑆 

( 2.6 ) 

CPA length = 2 ∙ 𝑁 − 2 − 𝑆  

( 2.7 ) 

5 < 𝑁 

(3,2) counters = 𝑁2 − 4 ∙ 𝑁 + 2 + 𝑆 

( 2.8 ) 

or 
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(3,2) counters = 𝑁2 − 4 ∙ 𝑁 + 1 + 𝑆 

( 2.9 ) 

CPA length = 2 ∙ 𝑁 − 1 − 𝑆  

( 2.10 ) 

 

 

 

Figure 6 Delay Diagram of an 8 x 8 Wallace Multiplier with RCA as a Final Adder [8] 
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Discussing about the delay estimation, all  𝑁2 partial products are generated in 

parallel by exercising the bit-by-bit multiplication using a simple two input AND gate. 

Hence, the delay contributed by PP generation is of 𝑂(1) complexity. Delay estimation 

for the Wallace multiplier is performed in [8] considering a nine gate full adder, 

comprised of only 2-input AND, 2-input OR, and inverter gates, as 3:2 compressor and a 

half adder, comprised of four 2-input gates, as 2:2 compressor while considering that all 

the two input standard cells having nearly equivalent area, gate count, and a delay of 1. 

Assuming the simultaneous arrival of all the input signals to the compressors, the delays 

of the sum, LSB output bit, and carry out, MSB output bit, signals for the full adder as 

3:2 compressor are 6 gate delays and 5 delays respectively, and the delays of sum and 

carry-out output signals of the half adder, as 2:2 compressor, are 3 and 1 gate delays 

respectively. Similarly, the delay estimation for the Dadda tree multiplier discussed in the 

following sub-section relies on the gate count and delay consideration made above. The 

following delay diagram for an 8 by 8 Wallace multiplier with an RCA as final adder is 

presented in [8], shown in Figure 6, with detailed explanation.  

A low power and scalable counter-based modular Wallace tree (CBMW) 

multiplier is presented in [11]. Partial products are reduced using a power efficient 

sequential 7:3 counter, composed of multiplexer and XOR, and by applying multibit 

addition in a single column. Power consumption is reduced by deploying a single 7:3 

counter to perform the partial product reduction in each column. Only a single 7:3 

counter used per each stage of partial product reduction applying inputs serially. 7:3 

counter presented in [12], which is an efficient 7:3 counter than the ones presented in  

[13], [14], [15], and [16], is used. The performance of the CBMW multiplier is compared 
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in terms of power, delay, total cell area, and PDP against the other variants such as 

conventional WTM, Reduced Complexity Wallace (RCW) tree multiplier [17], Counter-

Based Wallace (CBW) tree multiplier [18] [16], etc.,.  

Ever increasing use of the Booth-encoding in reduction of number of partial 

products led to the work in [19] to perform the performance comparison between RCW 

multiplier and radix-4 Booth-Reduced Complexity Wallace (R4B-RCW) multiplier and 

the synthesis results clearly show that the RCW performs significantly better than the 

R4B-RCW multiplier in terms of both speed and power consumption.  

2.2.2.2 Dadda Tree Multiplier [20] 

Dadda tree binary multiplier design is an optimized scheme invented by computer 

scientist, Luigi Dadda, in 1965 to compute the multiplication of the unsigned fixed-point 

numbers. Like Wallace tree structure, Dadda tree multiplier is also a column compression 

multiplier consists of three stages: Partial product matrix formation in stage 1, reduction 

of partial product matrix height to 2 in stage 2, and accumulation of these final two rows 

using carry propagation adder in the final stage.  
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Dadda tree multiplier has same number of reduction levels as Wallace tree 

multiplier with variation of matrix height at different levels. The number of full adders in 

both the tree structures is nearly the same. However, Wallace adder uses more of the full 

adders and a greater number of half adders in the reduction levels leading to a shorter 

 

Figure 7. Dot Diagram for an 8-bit x 8-bit Dadda Tree Multiplier [8] 
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final CPA adder compared to the Dadda multiplier. Dadda multiplier use a minimal 

number of compressors in each level of compression to achieve the required compression 

and the recursive reduction procedure is as follows [21] [8]:  

1. Starting from 𝑑1 = 2 as the final stage of reduction and 𝑁as the height of the 

original PP matrix, calculate 𝑑𝑗 , the height of the matrix  at 𝑗𝑡ℎ  level of 

reduction from the bottom, using 𝑑𝑗 = ⌊
3

2
∙ 𝑑𝑗−1⌋. Repeat calculating the 𝑑𝑗 

until reaching the largest matrix of at 𝑗𝑡ℎ level where 𝑑𝑗 < 𝑁 < 𝑑𝑗+1.  

2. Starting from the highest 𝑗𝑡ℎ stage from the end, matrix in each stage needed 

to be reduced using (3,2) and (2,2) counters to the desired heights calculated 

in the previous step. Reduction should be performed on only columns with 

dots greater than the required stage height, 𝑑𝑗. Carries coming from the least 

significant (3,2)  and (2,2)  counters are needed to consider as dots while 

reducing.  

3. Repeat the reduction procedure in step two on each stage until reaching the 

final stage of height 𝑑1 = 2.  

The dot diagram for 8 by 8 Dadda multiplier is shown in Figure 7. All three stages 

involving PP matrix generation, matrix reduction, and final CPA additions are shown in 

the figure. In stage 2 of reduction, each of four levels of reduction are labeled with the 

respective matrix height reduction requirement as 6, 4, 3, and 2 from the top to the 

bottom level. Digital hardware required to build the Dadda multiplier includes 64 AND 

gates in the first stage, 35 3:2 compressors and 7 2:2 compressors in the second stage, and 
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a 14-bit CPA adder in the final stage. Given N as the number of bits of operands, the 

number of (3,2)  counters, (2,2)  counters, and the size of the final CPA adder are 

determined as follows: 

(3,2) counters = 𝑁2 − 4 ∙ 𝑁 + 3 

( 2.11 ) 

(2,2) counters = 𝑁 − 1 

( 2.12 ) 

CPA length = 2 ∙ 𝑁 − 2  

( 2.13 ) 

The article [8], includes the discussion of delay estimation methodology, 

concluded about the delay comparison based on the closed examination performed 

between Dadda and Wallace multipliers that the general assumption of slightly faster 

response of Wallace multiplier due to the smaller final stage adder is incorrect. The delay 

calculation diagram is depicted in Figure 8 and the results presented in [8] by performing 

detailed analysis on both tree structures varying the operand sizes with both RCA and 

CLA are shown in Table 2.1 and concluded that the delay and complexity of Dadda 

multiplier is less compared to Wallace multiplier.  
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Figure 8. Delay Diagram of an 8 x 8 Dadda Multiplier with RCA as Final Adder [8] 
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Table 2.1. Delay and Complexity Comparisons for various sizes of Dadda and Wallace Multipliers 

with RCA and CLA presented in [8] 

Multiplier Size Delay Complexity 

Dadda Wallace Dadda Wallace 

with RCAs 

4 x 4 19 (100%) 21 (111%) 104 (100%) 104 (100%) 

8 x 8 37 (100%) 42 (114%) 528 (100%) 552 (105%) 

16 x 16 69 (100%) 77 (112%) 2336 (100%) 2476 (106%) 

32 x 32 133 (100%) 145 (109%) 9792 (100%) 10283 (105%) 

with CLAs 

4 x 4 15 (100%) 18 (120%) 120 (100%) 112 (93%) 

8 x 8 29 (100%) 31 (107%) 573 (100%) 582 (102%) 

16 x 16 43 (100%) 45 (105%) 2440 (100%) 2557 (105%) 

32 x 32 54 (100%) 56 (104%) 10013 (100%) 10475 (105%) 

 

Signed Radix-2m parallel multipliers with two new sign extension techniques to 

improve the energy efficiency with smaller design area presented in [22] with partial 

product compression performed in both Wallace and Dadda styles deploying two variants, 

one employing RCA-less optimization (NR) and the second one employing optimized 

sign extension without intermediary ripple carry adders (NR-SO) for multipliers of 

operand widths 8, 16, 32, and 64. 

An efficient signed carry-save multiplier (CSM) with modified square root carry-

select adder (MSCA), instead of conventional vector-merging adder (CVMA), for the 

vector-merging addition and improved full adder (IFA), in place of regular full adder, is 

presented in [23]. 8-bit and 16-bit wide multipliers are designed, synthesized, and made 

comparisons with the state-of-the-art designs to show that there is a remarkable 

improvement in the performance metrics, critical path delay (CPD), power, PDP, area, 

and ADP.  
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2.2.3 Booth Multiplier 

A signed multiplier technique is presented in [4] by Andrew D. Booth hence the 

name Booth multiplier. Booth multiplier architecture works mainly on the partial product 

generation using the Booth encoding scheme in Table 2.2. Though the encoding scheme 

looks like using three bits of the multiplier, the effective number of bits used at any stage 

of partial product generation are two and hence the encoding scheme is a radix-4 scheme.  

 

The grouping, shown in Figure 10, and encoding starts from the LSB side and 

proceeds towards the MSB side of the multiplier. First 3-bit grouping on the LSB side 

includes a padded bit-0 at -1th location, a pseudo index, and the next two bits include the 

LSB bits at 0th and 1st bit positions of the multiplier. The second 3-bit grouping include 

the MSB bit of the previous 3-bit grouping as an LSB bit and the next two bits include 

the adjacent bit values proceeding towards the MSB side, i.e., bits at indexes 2 and 3 

respectively. This grouping process continues until the end of the multiplier bits. Even 

number of multiplier bits result in complete grouping of all the bits. Since the effective 

number of bits used per group are two and the number of groups equal to half the total 

number of multiplier bits.    

 

Figure 9  3-bit grouping performed in radix-4 Booth multiplier 
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Table 2.2 Radix-4 Booth encoding scheme [4]   

𝑦2𝑖+1 𝑦2𝑖 𝑦2𝑖−1 Partial Product 

0 0 0 0 

0 0 1 +𝑋 

0 1 0 +𝑋 

0 1 1 +2𝑋 

1 0 0 −2𝑋 

1 0 1 −𝑋 

1 1 0 −𝑋 

1 1 1 0 

 

 A high-speed parallel Booth multiplier with new modified Booth encoding (MBE) 

scheme to achieve better performance than the traditional MBE schemes, modified PPA,  

and a new addition algorithm, multiple-level conditional-sum adder (MLCSMA), to 

perform the final addition is presented in [24]. One of the two common methods of 

generating partial products in the first stage is using radix-4 MBE [4] [25] which reduces 

the number of partial products by a factor of two. Area and delay profiles of new MBE 

scheme proposed is compared with several other existing MBE schemes and can be 

observed that the proposed scheme is faster while requiring moderate design area. Partial 

product reduction tree (PPRT) is used to effectively sum up all the partial products 

generated. Also, examined and concluded that the parallel multiplier constructed using 

Three-Dimensional-reduction-Method (TDM) [26] [27] with MBE is faster with smaller 

area. Partial product reduction using 4:2 compressor is faster compared to using Wallace 
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tree and Carry-save tree which uses 3:2 compressor, full adder, as a basic element, 

whereas, the TDM outperforms the 4:2 compressor in speed. New MLCSMA presented 

and used is constructed using conditional-sum adder (CSMA) and the conditional-carry 

adder (CCA) and showed an improvement of up to 25% performing final addition when 

designed in 350nm technology at supply voltage of 3.3 V. Since the tree based CSMA is 

a very regular structure with the performance compared to CLA adder. The hybrid adder 

structure retains the speed from by using the conventional CSMA [28] and saves area 

using CCA [29].  

Modified Booth algorithms performing speed critical wide operand 

multiplications with very high radix structure accompanied by deployment of reduced 

area adder trees is presented in [30] resulting in large increase in speed with reasonable 

design area. Another modified Booth algorithm with optimized radix-4 Booth encoders  

for partial product generation and effective use of (3,2), (5,3), and (7,4) compressors for 

partial product reduction in vertical direction is presented in [31].  

2.2.4 Baugh-Wooley Two’s Complement Signed Multiplier [32] 

A high-speed two’s complement m-bit by n-bit parallel array multiplier for signed 

multiplication, also known as Baugh-Wooley multiplier, is presented in 1973 [32] with 

the focus on the solving the problems caused by the sign bits in signed number 

multiplication using the most common two’s complement representation. Conventional 

two’s complement multiplier contains partial products with both the positive and negative 

signs. However, the Baugh-Wooley multiplier has an advantage over the conventional 

two’s complement multiplier is that the signs of all the partial product bits are positive. 

Conventional two’s complement binary multiplication, shown in Figure 10, multiplies the 
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multiplicand 𝑋 = (𝑥𝑚−1𝑥𝑚−2…𝑥1𝑥0)  with multiplier 𝑌 = (𝑦𝑛−1𝑦𝑛−2…𝑥1𝑥0)  resulting 

in the 𝑚 + 𝑛 bit product 𝑃 = (𝑝𝑚+𝑛−1𝑝𝑚+𝑛−2…𝑝1𝑝0). Product is the result of the sum 

of the partial product bits formed by AND each of the multiplicand bit with the multiplier 

bit.  

Let the values of the 𝑋  and 𝑌  be 𝑋𝑣  and 𝑌𝑣  which are given by the following 

equations ( 2.14 ) and ( 2.15 ) included in [32].  

𝑋𝑣 = −𝑥𝑚−12
𝑚−1 + ∑ 𝑥𝑖2

𝑖

𝑚−2

𝑖=0

     

( 2.14 ) 

𝑌𝑣 = −𝑦𝑛−12
𝑛−1 +∑𝑦𝑗2

𝑗

𝑛−2

𝑗=0

 

( 2.15 ) 

 

 

Figure 10  Conventional two's complement binary multiplication [32] 
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Let the value of the product 𝑃  be 𝑃𝑣 , and is represented by the equation ( 2.16 ).  

                 𝑃𝑣 = −𝑝𝑚+𝑛−12
𝑚+𝑛−1 + ∑ 𝑝𝑖2

𝑖

𝑚+𝑛−2

𝑖=0

= 𝑋𝑣𝑌𝑣                 

                      =  (−𝑥𝑚−12
𝑚−1 + ∑ 𝑥𝑖2

𝑖

𝑚−2

𝑖=0

 𝑌𝑣)(−𝑦𝑛−12
𝑛−1 +∑𝑦𝑗2

𝑗

𝑛−2

𝑗=0

) 

                     = (𝑥𝑚−1𝑥𝑛−12
𝑚+𝑛−2 + ∑ ∑𝑥𝑖𝑦𝑗2

𝑖+𝑗

𝑛−2

𝑗=0

𝑚−2

𝑖=0

)  

− (∑𝑥𝑚−1𝑦𝑗2
𝑚−1+𝑗

𝑛−2

𝑗=0

+ ∑ 𝑦𝑛−1𝑥𝑖2
𝑛−1+𝑖

𝑚−2

𝑖=0

) 

( 2.16 ) 

The above equation has partial products needed to be added and subtracted. The partial 

products with negative signs must be two’s complemented to perform the addition instead 

of subtraction. Assuming the magnitude of a two’s complement number 𝑍 is 𝑍𝑣. Value of 

the negation of the two’s complement number 𝑍 =  (𝑧𝑘−1, ⋯ , 𝑧0) is as follows: 

−𝑍𝑣 = 2
′𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑍 

                 = 1′𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑍 + 1 

                = −𝑧𝑘−12
𝑘−1 +∑𝑧𝑖2

𝑖

𝑘−2

𝑖=0

+ 1 

( 2.17 ) 

Therefore, the subtraction terms in the product equation,  
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2𝑚−1(−0 ∙ 2𝑛 + 0 ∙ 2𝑛−1 +∑𝑦𝑗𝑥𝑚−12
𝑗

𝑛−2

𝑗=0

) 

( 2.18 ) 

and  

2𝑛−1 (−0 ∙ 2𝑚 + 0 ∙ 2𝑚−1 + ∑ 𝑦𝑛−1𝑥𝑖2
𝑖

𝑚−2

𝑖=0

) 

( 2.19 ) 

are replaced with  

2𝑚−1(−1 ∙ 2𝑛 + 1 ∙ 2𝑛−1 + (∑𝑦𝑗𝑥𝑚−12
𝑗

𝑛−2

𝑗=0

) + 1) 

( 2.20 ) 

and  

2𝑛−1 (−1 ∙ 2𝑚 + 1 ∙ 2𝑚−1 + (∑ 𝑦𝑛−1𝑥𝑖2
𝑖

𝑚−2

𝑖=0

) + 1) 

( 2.21 ) 

respectively. Thus, the last two partial product rows, shown in Figure 11,  
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which need to be subtracted,  

0  0  𝑦𝑛−1𝑥𝑚−2  𝑦𝑛−1𝑥𝑚−3   ⋯  𝑦𝑛−1𝑥0 

( 2.22 ) 

and 

0  0  𝑦𝑛−2𝑥𝑚−1  𝑦𝑛−3𝑥𝑚−1   ⋯  𝑦0𝑥𝑚−1 

( 2.23 ) 

are replaced by  

1  1  𝑦𝑛−1𝑥𝑚−2  𝑦𝑛−1𝑥𝑚−3   ⋯  𝑦𝑛−1𝑥0 

( 2.24 ) 

and 

1  1  𝑦𝑛−2𝑥𝑚−1  𝑦𝑛−3𝑥𝑚−1   ⋯  𝑦0𝑥𝑚−1 

( 2.25 ) 

 

Figure 11  Positive and Negative segregation of PP bits [32] 
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respectively. The additional “1”s are added to the 𝑝𝑚−1 column and 𝑝𝑛−1 column. And, 

the non-uniformity occurred in the last two rows due to the need for using NAND instead 

of AND to form the partial product bits can be avoided by using the following 

equivalences ( 2.26 ) and ( 2.27 ),  

{

0,                                                                     𝑓𝑜𝑟 𝑦𝑛−1 = 0

2𝑛−1 (−2𝑚 + 2𝑚−1 + (∑ 𝑥𝑖2
𝑖

𝑚−2

𝑖=0

) + 1) ,         𝑓𝑜𝑟 𝑦𝑛−1 = 1
 

( 2.26 ) 

and  

{
 

 
0,                                                                                𝑓𝑜𝑟 𝑥𝑚−1 = 0

2𝑚−1(−2𝑛 + 2𝑛−1 + (∑𝑦𝑗2
𝑗

𝑛−2

𝑗=0

) + 1) ,         𝑓𝑜𝑟 𝑥𝑚−1 = 1
 

( 2.27 ) 

Following the equivalences ( 2.26 ) and ( 2.27 ), the above equations ( 2.20 ) and 

( 2.21 )can be rewritten as follows: 

2𝑛−1(−2𝑚 + 2𝑚−1 + 𝑦𝑛−12
𝑚−1 + 𝑦𝑛−1 + (∑ 𝑦𝑛−1𝑥𝑖2

𝑖

𝑚−2

𝑖=0

)) 

( 2.28 ) 

and 

2𝑚−1(−2𝑛 + 2𝑛−1 + 𝑥𝑚−12
𝑛−1 + 𝑥𝑚−1 + (∑𝑥𝑚−1𝑦𝑗2

𝑗

𝑛−2

𝑗=0

)) 

( 2.29 ) 
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A simplified proof for Baugh-Wooley two’s complement parallel array multiplier is 

presented in [33].  After achieving the uniformity at the last two rows and adding the 

constant terms, the rewritten partial product array with complete uniformity is shown in 

Figure 12. 

 

A new high speed digital multiplier using modified pairwise and parallel addition 

algorithms is presented in [34] to improve the speed and the simulation results show that 

the speed and delay performance is two folds better than the conventional linear array 

multipliers. The delay and power consumption for this design is significantly better than 

the designed and optimized Baugh-Wooley multiplier.   

2.2.5 Vedic Multiplier 

Vedic multiplier, which is based on Urdhva – Tiryakbhyam (UT) (vertical and 

crosswise) formulae, with fast adders (carry save adder, Brenk-Kung adder, and carry 

select adder) and by deploying compressors in place of full-adders and half adders to 

 

Figure 12  Baugh-Wooley algorithm with all positive PP bits [32] 
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minimize the power-delay-product (PDP) is proposed in [35]. Multipliers with operand 

width of 8-bit and 16-bit are designed, synthesized, and made proper comparisons with 

the synthesis results obtained from designing and synthesizing Ripple carry based Vedic 

multiplier (RCVM) [36], Carry Save array multiplier (CSAM) [37], compressor-based 

Vedic multiplier (CVM) [38], and modified Booth encoded Wallace tree multiplier 

(MBWM) [39]. Results comparison clearly shows that optimized Vedic multiplier 

presented shows significant improvement in delay and PDP with the area and power 

tradeoff. Another optimized Vedic multiplier with adaptable Manchester carry chain 

(MCC) adder, implemented with adaptable clocking scheme to be suitable to extend the 

use towards wider multipliers,  for low power-delay product is presented in [40]. 
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3 Optimization of radix-4 8 x 8 Booth multiplier 

The discussion in the following chapter is substantially drawn from [41] [42] [43] where we first 

reported the development and evaluation of this technique. 

3.1 Introduction  

The main motivation for optimization came from the observations made while 

designing the conventional Booth multiplier. Conventional Booth multiplier architecture 

is impressive for reducing the number of partial products to half, but the implementation 

needs further optimization to achieve low-cost and high-performance modified signed 

multiplier with Booth encoding. The improvements presented in [42] for an 8 x 8 Booth 

multiplier dealt with the unnecessary usage of full width adder and multiplier hardware, 

optimization of B2C, removal of adder in the first stage, and replacing the two-input 

encoder with three input encoders in the first stage. More details about the work in [42] 

are discussed in the sub-section 1.1 of this document. Further optimized 8 x 8 Booth 

multiplier is presented in [41] by majorly focusing on two aspects, (1) improving the 

speed by the execution of square root carry select adders with carry look ahead block in 

parallel to reduce the number of stages of addition, and (2) optimization of Booth encoder 

along with the B2C with bubble pushing and deploying a simple hardware by the fusion 

of the encoder logic and the multiplexer logic at every stage. Complete discussion about 

the implementation and results are included in the section 3.3 of this document.  
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3.2 Low power-delay-product radix-4 8 x 8 Booth multiplier [42] 

Booth encoding scheme applied at each stage of the conventional Booth 

multiplier architecture shown in Figure 13(a) uses one of the five distinct operations, to 

result in a partial product in the respective stage. The five distinct operations include: (1) 

all 0’s, (2) direct use of multiplicand, X, (3) multiplicand left shifted by one bit position, 

2X, (4) two’s complement of X, and (5) right shift the two’s complemented X by one bit 

position, -2X. Except the two’s complement operation to generate the -X as partial 

product at the respective stage, all other operations involve trivial and fast parallel 

computation of shift.  

 

 

                                               (a)                       (b) 

Figure 13. (a) Conventional Booth Multiplier [4], (b) optimized low PDP Booth Multiplier in 

[43] [42] 
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Design shown in Figure 13(a) avoid two’s complement operation by deploying 

the adder-subtractor and switching the addition and subtraction operation relying on the 

MSB bit of the 3-bit group. But, it takes an additional hardware and power consumption 

due to the deployment of the number of XOR’s at one of the multibit inputs of the adder 

at every stage. This leads to a significant power and area over head.  Left shift operations 

are performed by hardwiring the input connections to the multi-bit 3-to-1 multiplexer to 

avoid the actual physical hardware. Moving forward to the next stage, which takes an 

adjacent group of 3-bits of multiplier to perform the encoding scheme, the possible partial 

product output is formed from one of the above mentioned five distinct values which are 

left shifted by two-bit positions because of the two-bit left shift to form 3-bit group. 

Hence, there is no need to generate the five possible values in any other stage but to be 

selected using the multiplexers at each stage while hardwiring the inputs to eliminate the 

inclusion of the left shift block. The optimized 8 x 8 Booth multiplier is proposed and 

presented in [43] [42], shown in Figure 13(b), minimized the encoder in the first stage 

from a 3-bit encoder to 2-bit encoder based on the fact that the LSB bit, 𝑦−1, of the 3-bit 

group is always ‘0’, the first stage adder-subtractor block is replaced with an optimized 

B2C, and the sizes of the 15-bit adder-subtractor blocks at each stage are reduced to 9-bit 

for eliminating the unnecessary computational cost at the LSB bits and sign bits at the 

MSB side.  Optimized B2C presented in [42] is represented using equation ( 3.1 ) 

assuming the total number of bits of the word to be 2’s complemented are odd where n is 

even and [an an-1 … a2 a1 a0] as input vector and [acn acn-1 … a2 a1 a0] as the two’s 

complemented output 

𝑎𝑐0 = 𝑎0 
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𝑎𝑐1 = 𝑎0⊕𝑎1 

𝑎𝑐2 = 𝑎2⊕ (𝑎1 ∙ 𝑎0) = 𝑎2⊕ (𝑎1 ∙ 𝑎0) 

𝑎𝑐3 = 𝑎3⊕ (𝑎2 ∙  𝑎1 ∙ 𝑎0) = 𝑎3⊕(𝑎2 + (𝑎1 ∙ 𝑎0)) 

… 

𝑎𝑐𝑛−1 = 𝑎𝑛−1⊕(𝑎𝑛−2 + (𝑎𝑛−3 ∙ (𝑎𝑛−4 + (𝑎𝑛−5  ∙  ⋯+ (𝑎1 ∙ 𝑎0))))) 

𝑎𝑐𝑛 = 𝑎𝑛⊕(𝑎𝑛−2 ∙ (𝑎𝑛−3 + (𝑎𝑛−4 ∙ (𝑎𝑛−5 +⋯+ (𝑎1 ∙ 𝑎0))))) 

( 3.1 ) 
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3.3 Low-cost and high-performance radix-4 8 x 8 Booth multiplier [41] 

 

Booth multiplier architecture is further optimized in [41], shown in Figure 14, by 

implementing the following strategies: (1) replacing the adder-subtractor blocks in all 

stages with only adders and using the B2C output to feed the -X and -2X inputs to 

generate the partial products in all stages where necessary to reduce the power 

consumption and design area, (2) sequential addition of partial products is replaced with 

parallel addition, number of stages of addition are reduced to two, to improve the speed 

while keeping the area of partial product reduction hardware almost same, (3) encoded 

partial products are generated directly using the speed optimized encoder block with 

 

Figure 14. Further optimized low-cost and high-performance 8 x 8 Booth Multiplier with parallel 

additions in [41] 
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inherent multiplexer logic, (4)  B2C block in the worst delay path is further optimized to 

reduce the power consumption and design area, and (5) Square root carry select adders 

with carry look ahead blocks are used to improve the speed performance with a power 

and area tradeoff.   

 

 The anatomy of the radix-4 8 x 8 signed Booth multiplier with parallel 

adders is presented in [41] is illustrated in Figure 15. This parallel addition with careful 

grouping has higher performance advantage compared to employing the series addition of 

the partial products in [42] [43] [44] [45] [46]. The worst delay path includes B2C, Booth 

encoder, 10-bit SQCS with CLA, and 11-bit SQCS with CLA. Hence, all the blocks in 

worst delay path are optimized for speed. The explanation about each sub-optimization 

 

Figure 15  Radix-4 8x8 signed Booth multiplier with parallel encoding and additions in [41] 
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strategy used is included in the following sub-sections. Layout of the modified 8x8 Booth 

multiplier with parallel encoding scheme and parallel partial product reduction, which is 

synthesized at 500 MHz clock frequency and performed PnR, using Synopsys Design 

Compiler (DC) and IC compiler (ICC) respectively, is shown in Figure 16. Total chip 

area of the layout shown in the following figure is 2058.566 (𝜇m)2 with the standard cell 

utilization factor of 57.32%. Hence, the total cell area is nearly 1180 (𝜇m)2 with total 

number of standard cells used are 358. 

 

 

Figure 16  Layout of the modified Radix-4 8x8 signed Booth multiplier with parallel encoding 

and additions [41] 
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3.3.1 Booth encoder optimization & partial product generation 

Pre-computation stage first encoder for the first partial product, PP1, generation is 

reduced to a two-input encoder, 4 to 1 multiplexer, since the LSB bit, 𝑦−1, is always ‘0’ 

and can be ignored. The rest of the encoding uses 𝑦1 and 𝑦0 bits of the multiplicand to 

generate the partial products based on the encoding scheme shown in Table 3.1. The 

operation of choosing one of the four possible partial products is performed using a 9-bit 

wide 4 to 1 multiplexer, shown in Figure 17. The multiplexer takes four inputs, 0, X, -X, 

and -2X, with two LSB bits of the multiplier as selection inputs. The negative value of 

the multiplicand, -X, is generated by using the B2C and by feeding -2X, output from B2C, 

as an input after arithmetic left shift is performed just by hardwiring while avoiding the 

actual physical hardware. Discussion about the optimized B2C is included in a later sub-

section.  

Table 3.1  First stage encoding scheme [41] 

𝑦1 𝑦0 𝑦−1 Partial Product 

0 0 0 0 

0 1 0 +𝑋 

1 0 0 −2𝑋 

1 1 0 −𝑋 
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 The three encoders needed for the generation of the next three partial 

products, PP2, PP3, and PP4, in the pre-computation stage run in parallel, shown in 

Figure 15, and are built on a same logic.  The optimized encoder logic presented in [41], 

achieved by applying bubble pushing and Boolean logic minimization techniques, is 

shown in Figure 18 (b), and is compared to the encoder presented in [43] [42]. Typical 

Booth encoder takes in three input bits and yields three selection output bits, S2, S1, and 

S0, at each stage to fed to the multiplexer to choose one of the eight possible values based 

on the booth encoder strategy. Where in the optimized encoder results in four output bits, 

P, Q, R, and S, to choose between {X, 2X, -X, -2X} without the need for an exclusive 

multiplexer since the simplified multiplexer functionality is fused with the encoder to 

generate the partial products with reduced delay and reduced utilization of the design 

space. The Boolean logic used to generate the P, Q, R, and S scalars is shown in the 

Figure 18 (b) and the Boolean equation representation of the scalars as follows: 

 

Figure 17  First stage PP generation in [41] 
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𝑃 = (𝑦0⊝𝑦1) + 𝑦2 

( 3.2 ) 

𝑄 =  (𝑦0 ∙ 𝑦1) + 𝑦2 

( 3.3 ) 

𝑅 =  (𝑦0 + 𝑦1) ∙ 𝑦2 

( 3.4 ) 

𝑆 =  (𝑦0⊕𝑦1) ∙ 𝑦2 

( 3.5 ) 

The fused encoder and multiplexer logic presented in [41] for the generation of 

the 2nd, 3rd, and 4th partial products is shown in Figure 19 (a) and is compared with the 

conventional Booth encoder and the multiplexer, shown in Figure 19 (b), used to generate 

 

Figure 18  (a) Booth encoder in [43] [42],  (b) optimized Booth encoder in [41] 
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the partial products at each stage. P, Q, R, and S scalar outputs from the optimized 

encoder are used to select the X, 2X, -2X, and -X vectors respectively to generate the 

partial product, PP, and the Boolean representation of the selection hardware is 

represented using the following equation ( 3.6 ): 

𝑃𝑃 = (𝑃 ∙ 𝑋) + (𝑄 ∙ 2𝑋) + (𝑅 ∙ (−2𝑋)) + (𝑆 ∙ (−𝑋)) 

      =         (𝑃 ∙ 𝑋) ∙ (𝑄 ∙ 2𝑋) ∙ (𝑅 ∙ (−2𝑋)) ∙ (𝑆 ∙ (−𝑋)) 

( 3.6 ) 

Selection inputs P, Q, R, and S are enabled with the 3-bit input vectors {001, 010}, 

{011}, {100}, and {101, 110} respectively. In case of the input vectors ‘000’ and ‘111’, 

all the output bits of the encoder are 0’s and hence the fifth possible partial product of all 

0’s is assigned to the PP output vector. 
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3.3.2 Reduction of Partial Products using Two-Stage Parallel Addition  

As mentioned above, the three partial products generated are summed to have the 

final product. Square root (SQRT) carry select adder with carry look ahead (CSA-CLA) 

blocks are used to increase the computation speed with the power and area trade-off. 

Carry select blocks works on a simple and very effective way to increase the speed by 

precomputing the possible sum outputs with the assumption of ‘0’ carry-in and ‘1’ carry-

in. By the time of actual carry-in signal arrival at a particular block, two possible sum 

values are ready to be selected in parallel by the multiplexer. Including CLA logic in sub-

block further improves the speed performance by the very quick carry out generation 

based on the multi-bit propagate and generate chain. The parallel addition structure is 

 

Figure 19  (a) 2nd, 3rd, and 4th PP generation in [41],  (b) PP generation in [43] [42] 
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carefully designed following the grouping of the partial products illustrated in Figure 20. 

All the partial products, PP1, PP2, PP3, and PP4, generated are of 9-bit wide, PP[9:0], 

hence a 9-bit B2C is enough instead of a full width, 15-bit, B2C. PP1[8], PP2[8], and 

PP3[8] are repeated as extension bits for keeping the sign of the partial product. PP1[0] 

and PP1[1] are the final product bits P[0] and P[1] respectively. 10-bit SQRT CS-CLA 

with 3-bit CLA, 3-bit CS-CLA, and 4-bit CS-CLA sub-blocks, shown in Figure 21 (b), is 

used to sum the partial products PP1[11:2] and PP2[9:0], where PP1[11:9] are the sign 

extension bits formed by repeating the sign indicator bit, PP1[8]. A 9-bit SQRT CS-CLA 

with 2-bit CLA, 3-bit CS-CLA, and 4-bit CS-CLA sub-blocks, shown in Figure 21 (a),  is 

used to sum the partial products PP3[10:2] and PP4[8:0], where PP3[10:9] are the sign 

extension bits formed by repeating the sign bit, PP3[8]. At each partial product row to be 

summed in stage 1, the (n+1)th bit indicates the sign of that partial products and that bit 

value is copied across the proceeding MSB bits until reaching the bit index of 14, with 

the indexing begin at 0, with reference to the indices of the final product bits. Like the 

10-bit adder, 9-bit adder takes the first partial product with a starting index of 2. The 

remaining LSB bits of the first input vector PP3, PP3[0] and PP[1], are carried down to 

the second stage addition to fill in the gap to form a rectangular group structure for 

forming a SQRT CS-CLA.  These two adders, 9-bit adder and 10-bit adder, run in 

parallel for the stage 1 reduction resulting in two intermittent output vectors, S1 and S2, 

to be further reduced, summed, in the final stage, stage 2.  
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 The two sum outputs, S1[12:2] and S2[8:0], along with the two partial product 

bits, PP3[1:0], left unprocessed, from stage 1 are fed to the 11-bit SQRT CS-CLA in the 

final stage, stage 2. As shown in Figure 21 (c),  11-bit SQRT CS-CLA constitutes a 3-bit 

CLA block, 4-bit CS-CLA block, and 4-bit CS-CLA block. This parallel addition with 

two stage structure is reducing the two adder delays compared with the designs presented 

in [44] [45] [46], and reducing one adder delay if compared to the design in [42].  

 

Figure 20  Optimized radix-4 signed 8 x 8 Booth multiplier with two-stage architecture in [41] 
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Figure 21  (a) 9-bit SQRT CS-CLA,  (b) 10-bit SQRT CS-CLA,  (c) 11-bit SQRT CS-CLA [41]  
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3.3.3 B2C optimization  

Binary two’s complement block is one of the important blocks needed to be 

optimized for the reduction in delay since it has the ripple structure. An optimized B2C is 

presented in [42], discussion is included in the sub-section 1.1, shown in Figure 22 (a), 

and the design is better optimized in [41], shown in Figure 22 (b), for the reduction of 

area and power consumption. Based on the widely accepted and observed fact that the 

inverters at the inputs consume more power due to high switching activity, reduction of 

area and power consumption is achieved by bubble pushing the inverters at the inputs 

used in [42].  The Boolean equations for the 9-bit B2C used in [42] and [41], shown in 

Figure 22, are as follows, where [an an-1 … a2 a1 a0] as input vector and [acn acn-1 … a2 a1 

a0] as the two’s complemented output:  

𝑎𝑐0 = 𝑎0 

𝑎𝑐1 = 𝑎0⊕𝑎1 

𝑎𝑐2 = 𝑎0 + 𝑎1⊝𝑎2 

𝑎𝑐3 = 𝑎0 + 𝑎1 + 𝑎2⊝𝑎3 

𝑎𝑐4 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3⊝𝑎4 

𝑎𝑐5 = ((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3) + 𝑎4)   ⊝ 𝑎5 

= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4⊝𝑎5 

𝑎𝑐6 = ((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3) + 𝑎4 + 𝑎5)   ⊝ 𝑎6 

= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5⊝𝑎6 

𝑎𝑐7 = ((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3) + 𝑎4 + 𝑎5 + 𝑎6)   ⊝ 𝑎7 

= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6⊝𝑎7 
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𝑎𝑐8 = ((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3) + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7)  ⊕ 𝑎8 

    =  (𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7)  ⊝ 𝑎8 

= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7  ⊝ 𝑎8 

( 3.7 ) 

 

 The synthesis results for the two B2C designs are compared in the following 

Table 3.2. Synthesis is performed on the two designs designed in Synopsys 32nm CMOS 

RVT standard cells at 500 MHz frequency and 1.05 supply voltage with the help of 

 

(a) 

 

(b) 

Figure 22. (a) optimized B2C using bubble pushing in [42], (b) better optimized B2C in [41] 
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Synopsys design compiler (DC). Reduction in design area and power consumption can be 

observed with a very small delay trade-off.   

Table 3.2  Comparison of the synthesis (pre-layout) results for the B2C designs [41] 

B2C Design Frequency 

(MHz) 

Area 

(𝜇m)2 

Power 

(𝜇𝑊) 

Delay 

(ns) 

Boppana et al. [41] 500 56.41 15.15 0.41 

B2C in [42] 500 63.02 16.85 0.4 
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4 Proposed Multiplier Architecture based on radix-8 (3-bit 

grouping) structure 

Modified booth multiplier’s encoding scheme with the deployment of the parallel 

adders of square root carry select (SQCS) structure, constitutes carry look ahead (CLA) 

sub-blocks, is presented in [41], and has achieved a significant increase in speed by 

reducing the worst path delay and a significant decrease in the power consumption with a 

small reduction in area. As shown in Table 4.1, Booth encoding reduces the number of 

partial products by half, and the parallel execution of the adders in a binary tree style 

requires the same number of adders required by the series execution of the adders in 

summing the partial products while the number of stages required to sum the partial 

products to compute the final product are reduced to log2𝑁 from 
𝑁

2
− 1.    

Table 4.1  Booth multiplier with binary tree style reduction of partial products using adders 

Multiplier 

size (N) 

No. of 

PPs (N/2) 

No. of additions 

(N/2-1) 

Complexity in 

Hardware (#Adders) 

Complexity in Time 

(PP reduction time) 

8 4 2+1 = 3  𝑂(𝑁) =
𝑁

2
− 1 𝑂(log𝑁) = log2𝑁 

16 8 4+2+1=7 
𝑂(𝑁) =

𝑁

2
− 1 

𝑂(log𝑁) = log2𝑁 

32 16 8+4+2+1=15 
𝑂(𝑁) =

𝑁

2
− 1 

𝑂(log𝑁) = log2𝑁 

64 32 16+8+4+2+1=31 
𝑂(𝑁) =

𝑁

2
− 1 

𝑂(log𝑁) = log2𝑁 

 

Though the state-of-the-art modified Booth multiplier architectures use the radix-

8 Booth encoding with 3-bit grouping of the multiplier bits, the effective number of 

multiplier bits, from LSB to MSB, used in partial product generation at any stage are two. 
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Hence, the Booth multiplier architecture can be called as a radix-4 structure 

instead of radix-8 structure. The proposed architecture in this work is an attempt to prove 

that the use of the higher radix, radix-8 in this work, by deploying a non-trivial block, 

which further reduces the number of partial products to be added compared to the Booth 

architectures, and area-power-delay aware grouping of the partial products results in 

achieving a significant advantage, especially for the larger word size multipliers such as 

32-bit, 64-bit, etc. The proposed structure first converts the multiplicand and multiplier to 

its magnitudes, pre-compute the non-trivial functions, NT1, NT2, and NT3, included in 

Table 4.2 which depicts the separation of the eight functions to four trivial and four non-

trivial functions.  

Table 4.2  Proposed radix-8 (3-bit) grouping to separate trivial and non-trivial computations 

Trivial 

0 (000) By-pass N0 (No-Op) 

1 (001) << 0 (No shift or addition)  T0 

2 (010) << 1 (Left shift by 1) T1 

4 (100) << 2 (Left shift by 2) T2 

Non-Trivial 

3 (011) 2x+1x (or) 4x-1x NT1 

5 (101) 4x+1x  NT2 

6 (110) 4x+2x S1 = (NT1) << 1 

7 (111) 8x-x (or) 4x+2x+1x NT3 

 

4.1 8 x 8 signed multiplication using the proposed design : 

As seen in Table 4.2, All the trivial functions involve one of the four operations: 

no operation, all 0’s; the magnitude of the multiplicand (X) with no shift, X; X left 

shifted by 1 bit position, 2X; X left shifted by 2-bit positions, 4X. The complete working 

of the proposed radix-8 with the grouping of 3-bit multiplier bits for the 8x8 signed 

multiplier is clearly illustrated using the example-1 and example-2 shown in Figure 23 
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and Figure 24 respectively. As a first step, the magnitudes of the multiplicand, A, and 

multiplier, B, are computed as Ap and Bp. Magnitude of the negative number is computed 

using the 2’s complement and the magnitude of the positive number is the number itself. 

In example 1, the negative multiplicand, A = -72 (1011 1000),  is converted to its 2’s 

complement, Ap (0100 1000), which is denoted as X for the ease of representation in 

later steps. Taking the X as an input, the three non-trivial computations, 3X, 5X, and 7X, 

are computed by performing the addition operations. 3X is formed by summing the X and 

2X, 5X is formed by summing the X and 4X, and 7X is formed using the summation of -

X and 8X instead of summing X, 2X, and 4X to complete reduce the number of additions.  
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The first 6-bits of Bp on the LSB side are grouped into two 3-bit groups and the 

first two partial products in stage 1 are calculated following the computation criteria 

provided in Table 4.2. Indexing always starts from the LSB side with 0 as start index. 

 

Figure 23  Example-1 calculation of the 8 x 8 signed multiplication using the proposed radix-8 

architecture (NOTE: ! - NOT symbol. ^ - XOR symbol) 
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The second partial product needs to be shifted by three bits since the second group 

multiplier bits start from index 3. The bit, ‘1’, at position 7 of index 6 from the LSB side 

forms the third partial product of X left shifted by 6-bit positions. If this lone bit is ‘0’, 

then the third partial product contains all 0’s. The first two partial products enclosed in 

the L-shaped box are added together and the third partial product is carried to the next 

stage to perform the addition in stage 2. In two stages the magnitude of the product is 

computed as 001011100010000. As a final post computation step, the sign of the result 

should be decided based on the combination of signs of the original inputs, A and B. If 

the signs of A and B are opposite, 𝐴[7]⨁𝐵[7] == 1, and the magnitude of multiplier is 

not the max value of 128, ~𝐵𝑝[7] == 1 , then the final magnitude obtained is 2’s 

complement. XOR operation is represented as ^ and NOT operation is represented as ! in 

all the figures with example illustrations. The sign bit of a multiplier or multiplicand 

stays same even after performing the 2’s complement in only one case where the actual 

value is the lowest, -128, i.e., the magnitude value is at its maximum for the 8-bit signed 

number.  

Like the example 1, example 2 also starts with the first of magnitude calculation 

of both multiplicand, A = 6 (0000 0110), and multiplier, B = -36 (1101 1100), 2’s 

complement of B, Bp=(00100100) shown in Figure 24. As a next step, the non-trivial 

computation required are performed. In the proceeding step, the grouping of bits of the 

multiplier magnitude, Bp, is completed and the three partial products are generated based 

on the two 3-bit groups and the lone bit at index 6. Required additions are computed in 

stage 1 and stage 2. The result after performing the summation is the magnitude of the 

product. The sign of the product is determined based on the signs of the actual inputs. If 
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the signs of the actual inputs are opposite, then the result obtained from the summation at 

stage 2 is 2’s complemented to find the actual value of the product.  

 

 

 

Figure 24  Example-2 calculation of the 8 x 8 signed multiplication using the proposed radix-8 

architecture 
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And, the architecture of the proposed 8 x 8 design implemented using Synopsys 

RVT standard cells is shown in the following Figure 25. The precomputation block 

constitutes the two major parts which work sequentially. First one for finding out the 

magnitude using the two 8-bit B2Cs and two 8-bit wide 2 to 1 multiplexer. The second 

major part is the group of three non-trivial computation blocks built on SQCS-CLA. As 

discussed before, the non-trivial computation blocks results in vectors P, Q, and R to 

which hold the values of 3X, 5X, and 7X respectively. Since the magnitude of the 

multiplicand computed for an 8-bit signed number does not exceed 7-bit value except for 

the only one case where the magnitude is of 8-bit is when the actual multiplicand, A, is at 

its lowest value of -128 (1000 0000) which has highest magnitude of +128 (1000 0000) 

after 2’s complement conversion. Hence, the Ap and Bp values are of 8-bit values and the 

P, Q, and R vectors does not exceed 9-bit value of 384 (1 1000 0000), 10-bit value of 640 

(10 1000 0000), and 10-bit value of 896 (11 1000 0000) respectively. The 

precomputation block is kind of an overhead block looks like it is taking more design 

area and power since it has two B2C’s working in parallel and three SQCS-CLA addition 

blocks running in parallel. Since the adders in this overhead stage are fed with the output 

from the B2C+MUX block, the delay of the overall block constitutes delay from B2C, 

Multiplexer, and SQCS-CLA.  

Next, in stage 1, the two partial products are generated by selecting one of the 8-

possible vectors, 0, T0, T1, P, T2, Q, P<<1, and R with the selection inputs Bp[2:0] and 

Bp[5:3]. Here, 0 is all 0’s, possible trivial values T0, T1, and T2 which are X, 2X, and 4X 

values respectively can be fed to the multiplexer without the need for any shifter but just 
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Figure 25  Proposed 8 x 8 signed multiplier with radix-8 architecture 
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by hardwiring the connections, and the non-trivial values, P, Q, and R, are from the non-

trivial computational blocks from the precomputation block. As shown in example 1 and 

example 2 from Figure 23 and Figure 24 respectively, the three LSB bits of the first 

partial product generated from the multiplexer on the right side are assigned the first three 

LSB output bits, z[2:0] of the magnitude of the product. Here, the intermediate vector, z, 

represent the magnitude of the final product. The next six bits of the first partial product 

and the second partial product of ten bits are added together in stage 1. The careful 

grouping in the current stage and later stage results in reduction in addition hardware by 

employing the binary excess-1 code, BEC, style generator. Hardware of the BEC style 

block is less complex, simple, faster, requires less design area, and consumes less power 

for performing its operation. The BEC block does generate the excess-1 code if the carry 

output from the 7-bit SQCS-CLA block which is fed to the BEC is ‘1’. The 7-bit adder 

with 3-bit BEC structure results in a 11-bit output as an output of stage 1 and the first 

three bits of the output are the product magnitude bits z[5:3].  

In stage 2, the result obtained from the stage 1, z[10:3], and the 8-bit input, either 

all 0’s or X, formed based on the 7th bit of the magnitude of the multiplier at index six are 

added using an 8-bit SQCS-CLA. The 9-bit result of the adder is assigned to z[14:6]. As a 

final part of the process, the sign of the final product is determined by the sign bits, A[7] 

and B[7] of the actual inputs, A and B. If both the sign bits are opposite, then the 2’s  

complemented value of the z is selected as the output. This selection is done using a 15-

bit wide 2 to 1 multiplexer. And, the final minor step of stage 2 is to deal with the one 

extreme case where the multiplier is -128 (1000 0000) with B[7] and Bp[7] equals to 1. 

As mentioned above, this is the only case where the MSB bit, the sign bit, of the actual 
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multiplier, B, and the MSB bit of the magnitude of the multiplier, Bp[7] are equal to ‘1’. 

If this extreme case occurs, then the final output is simply equals to the 2’s complement 

of the multiplicand, Ac, left shifted by 7-bit positions. Again, there is no need for any 

shifter since the shifted input is just hardwired to the one of the inputs of the multiplexer. 

If not the extreme case, the output computed using stage 1 and stage 2 using adders with 

sign conversion, if needed, is assigned to the final output, Z. Worst delay path consists of 

three sub-blocks from the precomputation stage: B2C, 2 to 1 multiplexer, and SQCS-

CLA, two sub-blocks from stage 1: 8 to 1 multiplexer and the LSB side hardware for 

addition of the 7-bit SQCS-CLA, and four sub-blocks from stage 2: 8-bit SQCS-CLA, 

B2C, and two 2 to 1 multiplexers in series.  

Layout of the proposed 8 x 8 signed multiplier with a simple and new radix-8 

structure for partial product generation and new grouping strategy for the partial product 

reduction, which is synthesized at 250 MHz clock frequency and performed PnR, is 

shown in Figure 26. Total chip area of the layout shown in the following figure is 

2531.274 (𝜇m)2 with the standard cell utilization factor of 60.92%. Hence, the total cell 

area is nearly 1542 (𝜇m)2 with the total number of standard cells used as 497. 
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4.2 16 x 16 signed multiplication using the proposed design : 

The complete working of the proposed radix-8 with the grouping of 3-bit 

multiplier bits for the 16 x 16 signed multiplier is clearly illustrated using the example-1 

and example-2 shown in Figure 27 and Figure 28 respectively. And, the working is like 

the proposed 8 x 8 signed multiplier structure except few modifications such as increase 

 

Figure 26  Layout of the proposed 8 x 8 multiplier 
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in number of partial products hence the number of stages, change in the length of adders, 

and new addition plus BEC plus addition plus BEC block. As shown in the example-1 16 

x 16 proposed signed multiplier operation, in the first few steps, magnitudes of both 

multiplicand and multiplier, A and B respectively, are computed, as the 16-bit vectors Ap 

(X) and Bp, followed by the computation of the three non-trivial values, 3X (NT1), 5X 

(NT2), and 7X (NT3), in parallel. The maximum number of bits resulting from the non-

trivial computations, additions, are 17-, 18-, and 18-bits for NT1, NT2, and NT3 

respectively. Later steps are divided into three stages. In stage 1, five partial products are 

generated based on the five 3-bit groupings, radix-8 structures, shown by encircling the 

magnitude bits, Bp, of the multiplier. The sixteenth bit at the MSB position can be 

ignored since it represents the sign, except in the case of maximum magnitude of 32768 

due to the actual multiplier input of -32768 where the actual multiplier value in binary 

representation equals to the binary value of the magnitude of itself.  

In example 1, the multiplicand and multiplier are chosen as 26563 (0110 0111 

1100 0011) and -14241 (1100 1000 0101 1111) respectively. Since the actual value of the 

multiplicand is positive, the magnitude is equal to the actual value. Whereas in case of 

multiplier, the 2’s complement operation is performed to find the magnitude, 14241 

(0011 0111 1010 0001), since the actual multiplier value is negative. Except the MSB bit 

at the 16th bit position, all other 15-bits are grouped into five 3-bit groupings, 011-011-

110-100-001. Based on the 3-bit grouping and the radix-8 schema given in Table 4.2, the 

five partial product values generated in terms of the magnitude of the actual multiplier, X, 

are X, 4X, 6X, 3X, and 3X respectively. Here X and 4X are trivial values, 3X is first non-
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trivial value (NT1), and 6X is formed by just left shifting the NT1 by 1-bit position. 

These partial products are shifted by 0, 3, 6, 9, and 12 to form the PP array.  

 

 The five partial products from the precomputation stage are subjected to 

stage 1 reduction, summation. Each partial product is represented as six 3-bit groups 

 

Figure 27  Example-1 calculation of the 16 x 16 signed multiplication using the proposed radix-8 

architecture 
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since the partial products are shifted by 3-bit position due to the radix-8 scheme. The two 

rectangular solid boxes enclosing two 15-bit parts of the partial products are added to 

reduce. The two mirrored L-shape blocks perform addition plus BEC like operation plus 

addition plus BEC like operation. In any stage, if the grouping results in more BEC like 

operation, then it is an advantage for improving the speed while keeping the design area 

and power consumption low. The encircled group of 3-bits does not need any further 

processing and constitutes towards the final magnitude of the product. The three lone 

rectangular blocks containing 3-bits each: LSB block of the 3rd partial product and the 

two LSB blocks of the 5th partial product carried forward to the next stage unprocessed. 

The two 15-bit adder blocks yield 16-bit output, and the two L-shaped blocks together 

results in a 13-bit output. All the outputs and the blocks carried forward to the next stage, 

stage 2, are further processed to reduce.  

In stage 2, the bits enclosed under the two solid boxes are added separately and 

the 3-bit groups enclosed by the small rectangular blocks are carried forward to the next 

stage unprocessed. The encircled 3-bit group constitute towards the magnitude of the 

final product.  

In stage 3, the first two 3-bit groups of output resulted from the first adder of 

stage 2 constitute towards the magnitude of the final product as 3rd and 4th groups from 

the LSB side. The remaining output bits of first adder, all the output bits of the second 

adder, and the unprocessed 3-bit groups from stage 2 are summed together in the final 

stage of addition. The MSB side has more BEC like structure which is faster with less 

design area and power requirements. In post computation stage, the magnitude of the 

final product is 2’s complemented based on the logic that if the two actual inputs are 



 

62 
 

opposite in sign and the Bp is not equal to ‘1’. Bp is equal to ‘1’ in only one case where 

the multiplier is at its maximum magnitude of 32768 (1000 0000 0000 0000). At 

maximum magnitude case, the actual value of the signed integer and the 2’s 

complemented value of itself are same. In the maximum magnitude case, the final 

product is simply a 15-bit shifted, and 2’s complemented value of the multiplicand. In 

this example, example 1, the magnitude of the product value needs to be 2’s 

complemented to get the actual final product.  
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The computation procedure in example 2, shown in Figure 28, is exactly same as 

example 1 described and illustrated above. In preprocessing stage, multiplier value is 2’s 

complemented from (1000 1100 0101 1100) to (0111 0011 1010 0100) to compute the 

magnitude, Bp, and the multiplier magnitude value, Ap (X),  stays same since it is a 

 

Figure 28  Example-2 calculation of the 16 x 16 signed multiplication using the proposed radix-8 

architecture 
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positive number. The three non-trivial values, 3X, 5X, and 7X, are computed and used 

based on the 3-bit grouping of the 15-bits correspond to the magnitude of the multiplier 

to generate the five partial products. The five partial products are subjected to reduction, 

summation, in stage 1 results in 3 partial products to be processed in stage 2. Stage 2 

results in two partial products for stage 3 to be processed. Stage 3 addition results in the 

final magnitude of the product. The actual sign of the final product is determined based 

on the signs of the actual inputs. Magnitude value of the final product is 2’s 

complemented if the signs are opposite otherwise actual final product value stays the 

same as the magnitude. As mentioned above, in an exclusive case of multiplier being the 

lowest, highest in magnitude, for the given number of input bits, the final product is 

calculated simply by left shifting the multiplicand by 15-bit positions followed by the 2’s 

complement.  

The architecture of the proposed 16 x 16 design is implemented using Synopsys 

RVT standard cells and is shown in the following Figure 29. In the precomputation stage, 

the magnitudes of the two 16-bit signed inputs, multiplicand (A) and multiplier (B), to be 

multiplied are computed as Ap (X) and Bp. After the magnitude conversion, the three non-

trivial computation blocks, each one is made of SQCS-CLA adder, compute 3X (NT1), 

5X (NT2), and 7X (NT3). The results of the non-trivial blocks are represented as vectors 

P, Q, and R of width 17-, 18-, and 18-bits respectively.  

In stage 1, five 18-bit 8 to 1 multiplexers are used to select one of the eight 

possible values, {0, T0, T1, P (NT1), T2, Q (NT2), P<<1, R (NT3)}, of the partial 

product to form the five partial products. The 3-bit groups encircled, shown in the 

examples for the proposed 16 x 16 multiplier, are used as selector inputs, Bp[2:0], Bp[5:3], 
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Bp[8:6], Bp[11:9], and Bp[14:12]. Partial product generation starts from using the 3-bit 

grouping of the bits of Bp from the LSB side. All the partial products are generated in 

parallel and are of 18-bits wide. The partial products from the multiplexers are 

represented as vectors, k, l, m, n, and o, from right to left. The five generated partial 

products are subjected to reduction using two 15-bit SQCS-CLAs, yields 16-bit outputs, 

and a 12-bit addition plus BEC like operation block, yields 13-bit output, shown in the 

stage 1 of the Figure 29. The first 3-bits, k[2:0] on the LSB side of the first partial 

product on the right side, k, are assigned to the first 3-bits on the LSB side of the product 

magnitude, z[2:0]. Rest of the 15-bits of k, k[17:3], are fed to the 15-bit adder along with 

the LSB side 15-bits of the second partial product, l[14:0]. The 15-bits on the MSB side 

of the third partial product, m[17:3], and the first 15-bits on the LSB side of the fourth 

partial product, n[14:0], are fed to the 15-bit SQCS-CLA in the middle. Finally, the MSB 

side 12-bits of the fifth partial product, o[17:6], and the two MSB side 3-bit groups 

unprocessed of the second and fourth partial product, l[17:15] and n[17:15], are fed to the 

ADD plus BEC plus ADD plus BEC structure. Carry outs from each 3-bit sub-block is 

fed to the next 3-bit block towards the left side. The two 15-bit adders result in 16-bit 

outputs and the ADD plus BEC structure results in a 13-bit output.  
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Figure 29  Proposed 16 x 16 signed multiplier with radix-8 architecture 
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Stage 2 takes the three output vectors from stage 1 and further reduces to two 

output vectors using a 12-bit adder plus a single bit half adder (HA) structure and a 7-bit 

ADD plus 6-bit BEC structure. The first three bits, LSB bits, of the output vector from 

the first output vector from the stage 1 on the right side are assigned to z[5:3]. The MSB 

side 12-bits of the first output vector of stage 1 along with the concatenated 12-bits 

formed using the LSB side 9-bits of the second output vector from stage 1 and the three 

unprocessed three LSB bits of the third partial product, m[2:0], from stage 1 are fed to the 

SQCS-CLA plus HA block. The 13-bit output vector from the ADD plus BEC block of 

the second stage and the 7-bits on the MSB side of the second output vector, in the 

middle, of stage 1 are fed to the 7-bit ADD plus the 6-bit BEC block on the left side of 

the stage 2 enclosed in a solid rectangle. The fourteenth bit at index 13 can be ignored 

since it does not contribute to the 31-bits of the product output. Since the 7-bit addition is 

not in the time critical path, a simple ripple carry adder (RCA) is used instead of a fast 

SQCS-CLA to cut the additional cost, in terms area and power, of computation. Both 

addition blocks outputs 14-bit vectors. 

In stage 3, the six LSB bits of the first output vector on the right side of stage 2 

are assigned to z[11:6] and the rest of the MSB bits, 8-bits, are fed to the 8-bit SQCS-

CLA along with the eight LSB bits of the vector formed by the concatenation of the six 

unprocessed bits of the fifth partial product generated in stage 1, o[5:0], and the thirteen 

LSB bits of the output from the 7-bit ADD plus the 6-bit BEC structure on the left side of 

stage 2, shown in the Figure 40. Rest of the eleven MSB bits of the concatenated vector 

are fed to the 11-bit BEC structure with one more bit of input, carry input, from the carry 

output of the 8-bit SQCS-CLA. The 19-bit addition carried out using the SQCS-CLA and 
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the light weight BEC results in a 20-bit output vector. The 20th bit at index 19 can be 

ignored since it contributes to the 32nd bit of the product output, which is out of bounds of 

the expected 31-bit result. The LSB 19-bits are assigned to the 19 MSB bits of the 

magnitude of the product, z[30:12]. The post processing steps include deciding the sign 

of the final product, performing the sign conversion, and performing the one special case 

of multiplication where multiplier magnitude is at its maximum 32768. The sign of the 

partial product determined by performing the XOR operation on the MSB bits of the 

actual inputs, A[15] and B[15]. If the two signs of the inputs are opposite then the XOR 

results in a logic ‘1’ which is fed to the 31-bit wide 2 to 1 MUX to choose the 2’s 

complemented magnitude, z, value. The next and the final 31-bit wide 2 to 1 MUX chose 

between the product magnitude value decided by the preceding MUX and product 

obtained from the extreme case of multiplying multiplicand with the maximum 

magnitude multiplier, B, value. The final MUX is necessary since the extreme case of 

multiplying the multiplicand with the lowest 16-bit signed integer value is omitted in the 

previous stages. If the multiplier has the maximum magnitude value of 32768 due to its 

actual value of -32768, the final product will be simply the 15-bit left shifted 

multiplicand magnitude, Ac, value.     

Layout of the proposed 16 x 16 signed multiplier with a simple and new radix-8 

structure for partial product generation and new grouping strategy for the partial product 

reduction, which is synthesized at 250 MHz clock frequency and performed PnR, is 

shown in Figure 30. Total chip area of the layout shown in the following figure is 

7585.69 (𝜇m)2 with the standard cell utilization factor of 61.18%. Hence, the total cell 

area is nearly 4641 (𝜇m)2 with the total number of standard cells used as 1516. 
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Figure 30  Layout of the proposed 16 x 16 multiplier 
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4.3 32 x 32 signed multiplication using the proposed design : 

 

Like the proposed 8-bit and 16-bit signed multiplier architectures, 32-bit signed 

multiplier architecture in the precomputation stage, shown in Figure 31, majorly involves 

in magnitude computation for multiplicand (A) and multiplier (B) and the three non-

trivial computations, P, Q, and R, required to be performed once to be used in stage-1 

multiple times equal to the number of 3-bit groupings. Non-trivial computations are 

performed using the magnitude of the multiplicand, Ap or X. The 3-bit grouping required 

to be performed from the LSB side to MSB side of the magnitude bits of the multiplier, 

Bp, at the initial stages for the proposed radix-8 structure is left with 10 3-bit groupings 

and one lone MSB bit, Bp[30]. The 10 3-bit groupings generate 10 partial products, k, l, 

 

Figure 31  Stage-0 of the proposed 32 x 32 signed multiplier with radix-8 architecture 
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m, n, o, d, e, f, g, and h, of 34-bit wide and the lone bit, Bp[30], generates one more 

partial product of value equals to 0 or X based on its binary value.  

 

The partial products generated are reduced to find the final product magnitude in 

4 stages, from stage-1 to stage-4. In stage-1, each 3-bit grouping is used as selection input 

bits at each multiplexer, shown in Figure 32, to choose between one of eight possible 

values which includes both trivial and non-trivial values. The first 10 partial products 

chosen by the 10 multiplexers, with each multiplexer of 8-inputs of 34-bit wide, are 

reduced to 6 partial products using 5 30-bit SQCS with carry look-ahead adder blocks 

and a chain consisting of 5 pairs of 3-bit adder and 3-bit BEC like structure. As shown in 

figure, all the six reduced partial products generated in stage-1 are of 31-bit wide, 

including carry output. The reduced partial products in the current stage are named kl, mn, 

 

Figure 32  Stage-1 of the proposed 32 x 32 signed multiplier with radix-8 architecture 
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od, ef, gh, and ss with the carry outputs, C1, C2, C3, C4, C5, and C10 respectively, 

associated with. The first six LSB bits of the final product magnitude, z[5:3] and z[2:0], 

are resulted in this stage.    

The six partial products generated in stage-1 are further reduced in stages 2, 3, 

and 4, shown in Figure 33, to generate the final product magnitude, z,  and the final 

product, Z. Stage-2 further reduced the partial products reduced in stage-1 with the help 

of three 27-bit SQCS with CLA blocks and a 6-bit BEC like block. Stage-2 results in 

further reduced partial products and the six bits of final product magnitude, z[11:6]. 

Stage-3 further reduces the partially reduced partial products from stage-w with the help 

of one 22-bit SQCS with CLA and two block of 7-bit with SQCS with CLA plus the 6-bit 

BEC like structure. Stage-3 results in further partially reduced partial products and 12 bits 

of result final product magnitude, z[23:12]. Finally, stage-4 reduces the partially reduced 

partial products from the previous stage using one 9-bit SQCS with CLA, one 12-bit 

SQCS with CLA, two blocks consisting of half adder, full adder, and 11-bit BEC like 

structure, one block with two full adders and 10-bit BEC like structure, and one block 

with two full adders and 4-bit BEC like structure. After four stages of partial product 

reduction and the final product magnitude generation, the B2C block and the two 

multiplexers are used to decide the sign of the final product and to deal with the extreme 

case of multiplying with the maximum multiplier magnitude value at B = -2147483648, 

which is omitted in the initial stages of processing. The extreme case bypasses the 

previous computation stages and simply generates the output by left shifting the two’s 

complemented multiplicand value by 31-bit positions.    
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Layout of the proposed 32 x 32 signed multiplier with a simple and new radix-8 

structure for partial product generation and new grouping strategy for the partial product 

 

Figure 33  Stages 2, 3, and 4 of the proposed 32 x 32 signed multiplier with radix-8 architecture 
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reduction, which is synthesized at 200 MHz clock frequency and performed PnR, is 

shown in Figure 34. Total chip area of the layout shown in the following figure is 

29292.637 (𝜇m)2 with the standard cell utilization factor of 60.56%. Hence, the total cell 

area is nearly 17741 (𝜇m)2 with the total number of standard cells used as 5856. 

 

 

Figure 34  Layout of the proposed 32 x 32 multiplier 
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4.4 64 x 64 signed multiplication using the proposed design : 

 

 The precomputation stage, stage-0, of the proposed 64 x 64 signed multiplier with 

radix-8 structure is like 8-bit, 16-bit, and 32-bit proposed architectures discussed earlier, 

especially like the stage-0 of the 16-bit multiplier since all the bits of the magnitude of 

the multiplier are 3-bit grouped without leaving with any lone MSB bit. Computation of 

magnitudes of the multiplicand and the multiplier, Ap and Bp respectively, and the non-

trivial computations, P, Q, and R, are computed in the current stage resulting in 65-bit, 

66-bit, and 66-bit wide outputs respectively. The simple control logic blocks required to 

deal with the maximum magnitude of the multiplier case and to decide the sign of the 

 

Figure 35  Stage-0 of the proposed 64 x 64 signed multiplier with radix-8 architecture 
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final product, a and b respectively, are also implemented in the current stage of 

precomputation.  

 

Excluding the maximum magnitude multiplier case, which is dealt at the final 

stage by bypassing major computation stages 1 to 5, the 63 bits of magnitude are grouped 

into 21 groups to generate 21 partial products by using each group of 3-bits as selection 

bits to choose between one of the 8 possible inputs discussed earlier in the case of the 

proposed smaller width multiplier architectures. As shown in Figure 36, each multiplexer 

in stage-1 results in a 66-bit output. The 21 partial products generated are labeled d, e, f, 

g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, and x from LSB to MSB side. The 21 partial 

products are reduced to 11 partially reduced partial products using the help of 10 63-bit 

SQCS with CLA blocks and one block of chain of 10 pairs of simple computing blocks 

 

Figure 36  Stage-1 of the proposed 64 x 64 signed multiplier with radix-8 architecture 
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each pair includes a 3-bit adder and a 3-bit BEC like structure. Partially reduced partial 

products are labeled as de, fg, hi, jk, lm, no, pq, rs, tu, vw, and xx. The first 6-bits of the 

magnitude of the final product, z[2:0] and z[5:3], are resulted in the current stage.      

 The 11 partially reduced partial products resulted in the previous stage are further 

reduced by using 5 51-bit SQCS with CLA blocks and a block with a chain of 5 pairs of 

computation blocks with each pairing consisting of a 6-bit adder and a 6-bit BEC like 

structure, shown in Figure 37. Stage-2 results in 6-bits of magnitude of final product, 

z[11:6]. The further reduced partial products are labeled as defg, hijk, lmno, pqrs, tuvw, 

and xxxx with the associated MSB bit and carry outputs pairs generated at each block as 

{C12, C13}, {C14, C15}, {C16, C17}, {C18, C19}, {C20, C21}, and {C22, C23} 

respectively.  

 

 

Figure 37  Stage-2 of the proposed 64 x 64 signed multiplier with radix-8 architecture 
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Stages 3, 4, and 5, shown in Figure 38, involve further reduction of partially 

reduced partial products from the previous stages. Further reduction of partial products is 

in stage-3 is performed using one 56-bit wide, one 48-bit wide, and two 32-bit wide 

SQCS with CLA blocks, one 11-bit BEC like structure and two 12-bit BEC like 

structures. Stage-3 results in 12-bits of magnitude of the final product, z[23:12]. Stage-4 

further reduces the previously reduced partial products using a 45-bit SQCS with CLA 

block, a 37-bit SQCS with CLA, a 12-bit BEC like structure, and a 22-bit BEC like 

structure. Stage-4 results in 24-bits of the magnitude of the final product, z[47:24]. Partial 

product reduction in stage-5 uses one 34-bit SQCS with CLA and one 45-bit BEC like 

structure. Stage-5 results in the MSB 79-bits of the magnitude of the final product, 

z[126:82] and z[81:48]. Finally, B2C block converts the sign of the magnitude of the 

final product, and the two multiplexers, with a and b as selection signals, decide the sign 

of the final product and selects the final product in the case of maximum magnitude of 

the multiplier case, which is omitted in the starting stages, respectively. Each multiplexer 

takes 127-bit inputs and results in 127-bit output. In case of dealing with the extreme case 

of computing the final product with the least multiplier value, highest possible magnitude 

for the current multiplier size, the corresponding input is simply generated by left shifting 

the two’s complemented multiplicand value, Ac, by 63-bit positions. The final product 

output of 127-bit wide is labeled as Z[126:0].    
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Figure 38  Stages 3, 4, and 5 of the proposed 64 x 64 signed multiplier with radix-8 architecture 
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Layout of the proposed 32 x 32 signed multiplier with a simple and new radix-8 

structure for partial product generation and new grouping strategy for the partial product 

reduction, which is synthesized at 200 MHz clock frequency and performed PnR, is 

shown in Figure 39. Total chip area of the layout shown in the above figure is 

 

Figure 39  Layout of the proposed 64 x 64 multiplier 
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108593.952 (𝜇m)2 with the standard cell utilization factor of 61.46%. Hence, the total cell 

area is nearly 66743 (𝜇m)2 with the total number of standard cells used as 22194. 

4.5 Results & Performance Comparison 

The proposed multiplier design and the optimized Booth algorithms presented in 

[41] and [43] [42] are synthesized using Synopsys design compiler (DC). Regular voltage 

threshold (RVT) cells, for which the voltage threshold is in between high voltage 

threshold (HVT) cells and low voltage threshold (LVT) cells, at typical-typical corner are 

used to design, synthesize, and perform the placement and routing (PnR). The total power 

consumption and delay are measured with the supply voltage of 1.05 V. All the delay 

values reported are either from Synopsys Design Compiler (DC) generated timing reports 

or from IC Compiler (ICC) generated timing reports. But, the delay values tabled and 

discussed in this work are not from the Prime-Time tool generated timing reports. Prime-

Time (PT) tool is a powerful and the industry gold-standard static timing analysis (STA) 

tool that provides a single, golden, trusted signoff solution for timing, signal integrity, 

power, and variation-aware analysis [47]. Synopsys DC tool generated results correlate 

within 10% of physical implementation [48]. Path delay reported from PT is based on 

both Cell delay and net delay. PT can be used pre-PnR stage to confirm the design 

achieves the timing goal and post-PnR stage for the post-layout timing signoff. All the 

synthesized binary two’s complement (B2C) designs include input and output registers, 

but the area and power values, shown in the following Table 4.3, are only for the 

combinational part of the design. Area includes the combinational design area, 

buffer/inverter area, and the net interconnect area. But, the current B2C design used does 

not include any inverters or buffers and hence the buffer/inverter area for B2C designs of 
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various sizes are 0. Total delay includes the delay from the input registers and the 

combinational delay. The delay is the data arrival time (DAT) from the output of the 

input registers to the input of the output registers. Addition of the input and the output 

registers for the synthesis purpose results in an increase in the combinational circuit delay. 

Since the 8-bit proposed multiplier structure requires deployment of 8-bit and 15-bit B2C 

and the 16-bit multiplier uses 16-bit and 31-bit B2C, synthesis results for all four designs, 

which are synthesized at 500MHz clock frequency, are included in Table 4.3.  

Table 4.3  Synthesis (pre-layout) results for 8-bit and 16-bit B2C in [41] 

B2C Design Frequency 

(MHz) 

Area 

(𝜇m)2 

Power 

(𝜇𝑊) 

Delay 

(ns) 

8-bit (Boppana et al. [41]) 500 50 5.4 0.47 

15-bit (Boppana et al. [41]) 500 117 9.6 0.68 

16-bit (Boppana et al. [41]) 500 127 10.3 0.73 

31-bit (Boppana et al. [41]) 500 273 20.5 1.32 

32-bit (Boppana et al. [41]) 500/250 275 20.6/18.0 1.32 

63-bit (Boppana et al. [41]) 250 576 37.5 2.53 

64-bit (Boppana et al. [41]) 250 586 38.1 2.59 

127-bit (Boppana et al. [41]) 250 1300 96.8 3.97 

Proposed multiplier of 32 x 32 size uses two B2C blocks of size 32-bit, here N = 

32, at the precomputation stage and one 63-bit B2C, of width 2*N – 1, is used at the final 

stage to perform the magnitude conversion of the magnitude of the product obtained by 

performing the partial product reduction. Similarly, proposed multiplier of size 64 x 64, 

here N = 64, uses two B2C blocks of size 64-bits at the precomputation stage and one 
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B2C block of size 123-bits at the final stage. B2C blocks used in designing of 32-bit and 

64-bit multipliers are synthesized at 250MHz since the designs are wider with longer data 

arrival time. A major observation pertaining to the delay of the proposed multiplier 

designs can be made that the B2C blocks cause longer processing delays. This leads to 

the room to perform more research towards finding faster B2C designs. Also, area, power, 

and delay are lesser compared to the published values for the 8-bit B2C in [41], shown in 

Figure 40, since the 9th output bit is not required for the proposed design in this article 

due to the reason mentioned above.    

 

 The critical path delay for the B2C used and shown in Figure 40 is 

formulated as follows:  

𝐶𝑃𝐷 =  𝑓𝑙𝑜𝑜𝑟 (
𝑁−2

3
) × 𝑁𝑂𝑅4′𝑠 +  𝑓𝑙𝑜𝑜𝑟 (

𝑁−3

3
) × 𝐼𝑁𝑉′𝑠 +  𝑁𝑂𝑅# [((𝑁 −

2) 𝑚𝑜𝑑 3) + 𝑖𝑛𝑡 (𝑏𝑜𝑜𝑙(~((𝑁 − 2) 𝑚𝑜𝑑 3) == 0))]  +  𝑋𝑂𝑅2   

( 4.1 ) 

The synthesis results for the rest of the sub-components used in the proposed 

multipliers of various sizes, 8-bit, 16-bit, 32-bit, and 64-bit, with radix-8 structure are 

 

Figure 40  Optimized 8-bit B2C in [41] used in the 8x8 multiplier proposed in this work 
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shown in the Table 4.4. All the inputs coming to each of the combinational logic blocks 

comes through the registers and similarly, all the outputs of the combinational blocks are 

connected to registers. Area and power are measured only for the combinational part of 

the design like the measurements done for the B2C design. And, the delay measured and 

included in the table is the data arrival time.  

 

 

Figure 41  BEC like structure with widths (a) 3-bit, (b) 4-bit, (c) 6-bit, and (d) 10-bit 
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 BEC like structure used has the similar structure like B2C block. B2C involves bit 

wise inversion and excesss-1 calculation. The actual BEC (Binary Excess-1 Converter) 

simply adds 1 to the input data word of respective size used. Whereas, BEC like 

structures used in all four different size multipliers compute the excess 1, i.e., addition of 

1, if Cin = 1, otherwise results in exact input as output without any addition of 1. N-bit 

wide structure yields a N+1 result, i.e., Co = 1, if and only if all N-bits are binary 1. For 

instance, if the 3-bit BEC like structure is considered with inputs as ‘111’ and Cin=1, 

then only the output is 4-bit, ‘1000’, i.e., Co = 1 and {e2e1e0} = {000}. BEC like structure 

is very simple to design, occupies less area, consumes less power, and performs 

computation quickly. Each bit of BEC like block requires an average design area of an 

AND gate plus a 2-input XOR gate. Some of the BEC like structures of 3-bit, 4-bit, 6-bit, 

and 10-bit wide are shown in Figure 41 (a), (b), (c), and (d) respectively.  The usage of 

BEC like structures has been increased with the increase in the width of the multiplier. 3-

bit wide BEC like structure is used in the proposed 8 x 8 multiplier, 3-bit, 6-bit, and 11-

bit wide BEC like structures is used in the proposed 16 x 16 multiplier, 4-bit, 6-bit, 10-bit, 

and 11-bit wide structures used in the proposed 32 x 32 multiplier, and 6-bit, 11-bit, 12-

bit, 22-bit, and 45-bit wide BEC like structures used in the proposed 64 x 64 multiplier. 

To make the fair comparison between BEC structures of various size, all the designs are 

synthesized at 500MHz. Simple and light weight BEC like designs and SQCS adder with 

CLA blocks of similar width have the similar delays. The delays of the BEC like 

structures and SQCS adders of sizes 12-bit, 22-bit, and 45-bit are {0.62, 0.72}ns, {1.04, 

1.06}ns, and {1.96, 1.92}ns respectively. The delay of the BEC like block is nearly 

proportional to the number of 3-bit chains times the added delay by the 4-input AND gate 
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plus the 2-input XOR gate. The formulation required to calculate or estimate the exact 

critical path delay (CPD) of the BEC like structure is shown in the following equation 

consisting of 𝑓𝑙𝑜𝑜𝑟 (
𝑁−1

3
) times the 4-input AND gate delays plus one [((𝑁 −

1) 𝑚𝑜𝑑 3) + 𝑖𝑛𝑡 (𝑏𝑜𝑜𝑙(~((𝑁 − 1) 𝑚𝑜𝑑 3) == 0))] -input AND gate delay, and one 

two input XOR gate delay. 

 

𝐶𝑃𝐷 =  𝑓𝑙𝑜𝑜𝑟 (
𝑁−1

3
) × 𝐴𝑁𝐷4′𝑠 +  𝐴𝑁𝐷# [((𝑁 − 1) 𝑚𝑜𝑑 3) + 𝑖𝑛𝑡 (𝑏𝑜𝑜𝑙(~((𝑁 −

1) 𝑚𝑜𝑑 3) == 0))]  +  𝑋𝑂𝑅2   

( 4.2 ) 

 

Table 4.4  Synthesis (pre-layout) results for the sub-components used in the 8 x 8, 16 x 16, 32 x 32, 

and 64 x 64 signed multiplier designs proposed 

Design Name Frequency 

(MHz) 

Area  

(𝜇m)2 

Power  

(𝜇𝑊) 

Delay  

(ns) 

3-bit BEC 500 22 2.3 0.30 

4-bit BEC 500 27 2.8 0.32 

6-bit BEC 500 44 4.1 0.42 

10-bit BEC 500 83 5.9 0.52 

11-bit BEC 500 95 6.5 0.57 

12-bit BEC 500 104 7.0 0.62 

22-bit BEC 500 193 12.6 1.04 

45-bit BEC 500 406 24.7 1.96 
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7-bit SQCS-CLA (34) 500 230 28 0.57 

8-bit SQCS-CLA (44) 500 262 32 0.63 

9-bit SQCS-CLA (234) 500 299 36 0.61 

12-bit SQCS-CLA (2334) 500 404 48 0.72 

15-bit SQCS-CLA (22344) 500 504 60 0.83 

22-bit SQCS-CLA (22344) 500 747 88.8 1.06 

27-bit SQCS-CLA (222333444) 500 923 109 1.27 

30-bit SQCS-CLA (2223333444) 500 1030 121 1.37 

32-bit SQCS-CLA (22-bit & 10-

bit SQCS-CLA) 

500/250 1095 129.1/95.3 1.47 

34-bit SQCS-CLA (27-bit & 7-bit 

SQCS-CLA) 

500/250 1163 137.7/101.4 1.52 

37-bit SQCS-CLA (30-bit & 7-bit 

SQCS-CLA) 

500/250 1270 150/110.4 1.62 

45-bit SQCS-CLA (30-bit & 15-

bit SQCS-CLA) 

500/250 1547 182/134.2 1.92 

48-bit SQCS-CLA (30-bit, 10-bit, 

& 8-bit SQCS-CLA) 

250 1650 143.1 2.02 

56-bit SQCS-CLA (27-bit, 22-bit, 

& 7-bit SQCS-CLA) 

250 1919 167.1 2.28 

61-bit SQCS-CLA (30-bit, 22-bit, 

& 9-bit SQCS-CLA) 

250 2098 181.8 2.46 

63-bit SQCS-CLA (30-bit, 27-bit, 250 2172 187.9 2.59 
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& 6-bit SQCS-CLA) 

8-bit NT Block 500 309 36 0.71 

16-bit NT Block 500 655 80 1.20 

32-bit NT Block 250 1348 120.9 2.17 

64-bit NT Block 250 2946 273.5 3.97 

 

 Coming to the comparison of the design area required and power consumption of 

12-bit, 22-bit, and 45-bit wide SQCS adder and BEC like structure, SQCS adder requires 

approximately 3.7 times the area and utilizes approximately 7 times the power compared 

with BEC like structure. Square root carry select (SQCS) adders with carry-look-ahead 

(CLA) blocks of various sizes are used along with the BEC like blocks to reduce the 

partial products. SQCS with CLA blocks are also used and the only computation used to 

generate the P, Q, and R outputs of the non-trivial blocks. The SQCS with CLA blocks 

used in NT blocks are not exactly of the square-root carry select structure. These blocks 

follow the square root carry select structure for the initial few blocks at the LSB side and 

the later follows the linear carry select structure. Hence, the adders used in the NT blocks 

can be labeled as L/SQCS_CLA. This leads to more room for finding and deploying a 

faster adder to reduce the delay.  

 An important observation can be made based on the processing delays of the B2C 

blocks, delays of the non-trivial blocks, and the delays of the complete 8-bit, 16-bit, 32-

bit, and 64-bit multiplier designs, included in Table 4.5, that the B2C and NT blocks 

constitute towards the major portion of the total delay of the proposed multiplier designs. 

The following table, Table 4.5, include the synthesis and PnR results of the 8-bit and 16-
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bit multipliers at 250 MHz clock frequency. The delays of the 8-bit and 16-bit multipliers 

are {2.17, 1.77} ns and {3.4, 2.74} ns respectively for the {synthesized, PnR} designs. 

Similarly, the delays measured for the 32-bit and 64-bit multipliers synthesized, at clock 

frequencies of 200 MHz and 100 MHz respectively, are {4.97, 4.44} and {9.98, 7.81} 

respectively for the {synthesized, PnR} designs. In case of synthesized designs, the 

delays are increasing at a rate of around 1.5x moving from 8-bit to 16-bit and 16-bit to 

32-bit, whereas, rate is changed to nearly 2x moving from 32-bit to 64-bit. Similarly, the 

rate at which the delays increase by for the placement and routed designs moving from 8-

bit to 16-bit to 32-bit is nearly 1.5x but this rate is changed to 1.75x moving from 32-bit 

to 64-bit design. This increase in rate of change of delay is clearly due to the use of 

mostly linear style carry select adders in NT blocks and in stages involving partial 

products.  The area column of the table includes the non-combinational area (NCA) by 

the registers, combinational area (CA), and the total area (TA) which is the sum of NCA, 

CA, buffer/inverter area, macro/black box area if any, and the net interconnect area for 

the proposed design. Total cell area (TCA) includes CA and NCA. The power column in 

the table consists of two groups of power: one includes the power consumption by the 

registers and the second of the power consumption by the combinational circuit. The total 

power consumption by the each of the power group objects consists of internal power 

(IP), switching power (SP), leakage power (LP), and the total power (TP) which is the 

sum of IP, SP, and LP. Total power section includes the power consumption by the 

registers and the combinational part of the design. In general, if the multiplier size 

doubles then the size of the array formed by the partial products doubles vertically and 

horizontally. Hence, the area increases by four times and the delay increases by 
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approximately two times. But, whereas in the case of the proposed design, the delay and 

the total area are increased by approximately 1.5 times and 3 times respectively when 

moving from the 8-bit proposed multiplier to the 16-bit proposed multiplier. With the 

proposed architecture, the critical path delay (CPD), total power consumption, and total 

area are increased by 1.5 to 2 times, 3 to 4 times, and 3 to 4 times respectively while 

comparing with the designed multiplier of twice the size.  

Table 4.5  Synthesis and post-layout results for the proposed design 

Radix-8 (3-bit grouping) 

# Multiplier 

Size 

Synthesis PnR 

Area 

(𝜇m)2 

Delay 

(DAT) 

(ns) 

Power 

(𝜇W) 

Area 

(𝜇m)2 

Delay 

(DAT) 

(ns) 

Power 

(𝜇W) 

8 

(1133) 

(2 stages) 

 

Reg: 

205(NCA) 

2.17 @4n clk 

Reg: 

50(IP) 

0.5(SP) 

35(LP) 

------ 

85(TP) 

Reg: 

205(NCA) 

1.77 @4n clk 

Reg: 

54(IP) 

1.3(SP) 

35(LP) 

------ 

90(TP) 

Total: 

1327(CA) 

1815(TA) 

Total: 

110(IP) 

28(SP) 

133(LP) 

------ 

271 

Total: 

1337(CA) 

1840(TA) 

Total: 

115(IP) 

43(SP) 

140(LP) 

------ 

298 

16 

(133333) 

(3 stages) 

 

Reg: 

417(NCA) 

3.4 @4n clk 

Reg: 

101(IP) 

1.5(SP) 

71(LP) 

------ 

174(TP) 

Reg: 

417(NCA) 

2.74 @4n clk 

Reg: 

112(IP) 

3.2(SP) 

71(LP) 

------ 

186(TP) 

Total: 

4150(CA) 

5725(TA) 

Total: 

297(IP) 

82(SP) 

367(LP) 

------ 

Total: 

4224(CA) 

5777(TA) 

Total: 

315(IP) 

148(SP) 

418(LP) 

------ 
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746(TP) 881(TP) 

32 

(11333333333

3) 

(4 stages) 

Reg: 

840(NCA) 

4.97 @5n clk 

Reg: 

161(IP) 

1.9(SP) 

142(LP) 

------ 

305(TP) 

Reg: 

841(NCA) 

4.44 @5n clk 

Reg: 

181(IP) 

4.7(SP) 

143(LP) 

------ 

328(TP) 

Total: 

16881(CA) 

22776(TA) 

Total: 

892(IP) 

309(SP) 

1446(LP) 

------ 

2647(TP) 

Total: 

16899(CA) 

25106(TA) 

Total: 

939(IP) 

552(SP) 

1704(LP) 

------ 

3194(TP) 

64 

(13333333333 

33333333333) 

(5 stages) 

Reg: 

1685(NCA) 

9.98 @10n clk 

Reg: 

161(IP) 

1.8(SP) 

285(LP) 

------ 

447(TP) 

Reg: 

1686(NCA) 

7.81 @10n clk 

Reg: 

187(IP) 

7.5(SP) 

285(LP) 

------ 

479(TP) 

Total: 

63548(CA) 

85708(TA) 

Total: 

1628(IP) 

625(SP) 

5224(LP) 

------ 

7478(TP) 

Total: 

66743(CA) 

100764(TA) 

Total: 

1789(IP) 

1364(SP) 

7016(LP) 

------ 

10169(TP) 
NCA - Non-Combinational Area; CA – Combinational Area; TA – Total Area; TCA – Total Cell Area; 

IP – Internal Power; SP – Switching Power; LP – Leakage Power; TP – Total Power; TDP – Total 

Dynamic Power; CLP – Cell Leakage Power;  

 

Similarly, synthesis and PnR are performed on the proposed designs of sizes, 8-, 

16-, 32-, and 64-bit, synthesized at highest clock frequency and the respective pre- and 

post-layout reports including the area, delay, and power are included in the following 

table, Table 4.6. The highest clock frequencies at which the designs, of widths 8-, 16-, 

32-, and 64-bit, synthesized are 476 MHz, 333 MHz, 207 MHz, and 104 MHz 

respectively, resulting in post-layout delays of 1.69 ns, 2.49 ns, 4.22 ns, and 6.95 ns 

respectively, with the total area and power consumption of {1875 (𝜇m)2, 0.46 mW}, 
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{5973 (𝜇m)2, 1.09 mW},  {25107 (𝜇m)2, 3.26 mW}, and {100993 (𝜇m)2, 10.45 mW} 

respectively for the post-layouts.  

 

 

 

Table 4.6  Synthesis and post-layout results for the proposed designs synthesized at highest frequency 

Radix-8 (3-bit grouping) 

# Multiplier Size Synthesis PnR 

Area 

(𝜇m)2 

Delay 

(DAT) 

(ns) 

Power 

(𝜇W) 

Area 

(𝜇m)2 

Delay 

(DAT) 

(ns) 

Power 

(𝜇W) 

8 

(1133) 

(2 stages) 

 

Reg: 

205(NCA) 

 

2.07 @2.1n clk 

Reg: 

96(IP) 

1(SP) 

35(LP) 

------ 

131(TP) 

Reg: 

(NCA) 

205 

1.69 @2.1n clk 

Reg: 

104(IP) 

2.5(SP) 

35(LP) 

------ 

141(TP) 

Total: 

1368(CA) 

1573(TCA) 

1860(TA) 

Total: 

215(IP) 

55(SP) 

142(LP) 

------ 

413(TP) 

Total: 

1371(CA) 

1576(TCA) 

1875(TA) 

Total: 

224(IP) 

84(SP) 

147(LP) 

------ 

455(TP) 

16 

(133333) 

(3 stages) 

 

Reg: 

417(NCA) 

2.98 @3n clk 

Reg: 

135(IP) 

2(SP) 

71(LP) 

------ 

208(TP) 

Reg: 

417(NCA) 

2.49 @3n clk 

Reg: 

151(IP) 

5(SP) 

71(LP) 

------ 

226(TP) 

Total: 

4376(CA) 

4793(TCA) 

5976(TA) 

Total: 

410(IP) 

116(SP) 

401(LP) 

------ 

928(TP) 

Total: 

4400(CA) 

4818(TCA) 

5973(TA) 

Total: 

435(IP) 

214(SP) 

440(LP) 

------ 

1089(TP) 
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32 

(113333333333) 

(4 stages) 

Reg: 

840(NCA) 

4.79 @4.82n 

clk 

Reg: 

167(IP) 

2(SP) 

142(LP) 

------ 

311(TP) 

Reg: 

841(NCA) 

4.22 @4.82n 

clk 

Reg: 

189(IP) 

6(SP) 

143(LP) 

------ 

338(TP) 

Total: 

16988(CA) 

17827(TCA) 

22905(TA) 

Total: 

926(IP) 

322(SP) 

1457(LP) 

------ 

2704(TP) 

Total: 

16954(CA) 

17794(TCA) 

25107(TA) 

Total: 

976(IP) 

576(SP) 

1708(LP) 

------ 

3260(TP) 

64 

(13333333333 

33333333333) 

(5 stages) 

Reg: 

1686(NCA) 

9.57 @9.6n clk 

Reg: 

168(IP) 

2(SP) 

285(LP) 

------ 

454(TP) 

Reg: 

1688(NCA) 

6.95 @9.6n clk 

Reg: 

195(IP) 

8(SP) 

286(LP) 

------ 

488(TP) 

Total: 

63849(CA) 

65535(TCA) 

85771(TA) 

Total: 

1705(IP) 

656(SP) 

5264(LP) 

------ 

7625(TP) 

Total: 

65356(CA) 

67044(TCA) 

100993(TA) 

Total: 

1877(IP) 

1469(SP) 

7100(LP) 

------ 

10447(TP) 
 

A fact that the cell leakage power nearly equals to the total dynamic power for the 

advanced nodes can be observed based on the TDP and CLP values included in the 

following Table 4.7 for various sizes of the proposed design. In case of 32-bit design, the 

CLP is greater than the TDP while the CLP is more than twice the TDP value for the 64-

bit proposed design. This is because of the inevitable scenario of smaller size nodes prone 

to more leakages.  
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Table 4.7  Comparison of Total Dynamic Power (TDP) and Cell Leakage Power (CLP) for the 

proposed synthesized and post-layout designs of various sizes 

 

Design 

Synthesis PnR 

TDP 

(mW) 

CLP 

(mW) 

TDP 

(mW) 

CLP 

(mW) 

8 @ 4ns 0.1380559 0.1330748 0.1581373 0.1399205 

16 @ 4ns 0.3793445 0.3670299 0.4632997 0.4181780 

32 @ 5ns 1.2016 1.4456 1.4909 1.7040 

64 @ 10ns 2.2534 5.2243 3.1530 7.0163 

 

Delay, area, and power consumption measured for the conventional Booth 

multiplier synthesized at the respective highest frequency, included in the following 

Table 4.8, for the multipliers are increasing in factors of nearly 2x, 4x, and 3x 

respectively while doubling the operand sizes. There is an improvement, reduction in this 

scenario, of delay, area, and power consumption by a factor of nearly 1.5x to 2x when 

comparing the results obtained from the synthesized conventional Booth multiplier of 

various sizes, included in the Table 4.8, with the results obtained from the synthesized 

modified Booth multiplier presented or synthesized simple radix-8 design proposed of 

various sizes presented in this work.  

Comparison of the digital design performance characteristics for the 8-bit design 

in [46] and the modified Booth multiplier design in [41], both synthesized at 500MHz, 

results in an observation of reduction in delay, area, power, ADP, PDP, and EDP by 

6.33%, -0.32%, 22.02%, 6.03%, 26.95%, and 31.58% respectively. The performance 

characteristics compared in the same order for the synthesized 8-bit design in [46] with 

the post-layout 8-bit design in [41], the performance improvements are more significant 

with 24.68%, 5.46%, 21.56%, 28.8%, 40.92%, and 55.5% respectively. Also, the data 
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obtained from [22] for the signed radix-2m parallel multipliers of sizes, 8-, 16-, 32-, and 

64-bit with four proposed architectures based on optimized Wallace and Dadda tree 

partial product compression strategies are presented in the following table for comparison. 

Optimized Booth multiplier implementation in [41] employs optimized partial 

product generation and parallel addition of the partial products. Addition is performed in 

the binary tree style. The number of partial products to be summed following the 

architecture in [41] are same as in the case of conventional Booth multiplier and the 

numbers are 4, 8, 16, and 32  respectively for the 8-, 16-, 32-, and 64-bit multipliers with 

two times the change in the width of the partial products from increase in the multiplier 

size by two times. Performance comparison between the optimized Booth multiplier 

presented in this work [41], as a first contribution, and the low PDP Booth multiplier 

presented in [42] [43], both designs synthesized at 500MHz, leads to an observation of 

reduction in delay, area, power, ADP, PDP, and EDP by 25.63%, 15.03%, 26.57%, 

36.79%, 45.39%, and 59.36% respectively. Comparing the design area required for the 

optimized Booth multiplier structure in [41] and the signed multiplication included in this 

work, the design space requirement quadruple using the structure in [41] since the 

number of partial products and the width of each partial product doubles which doubles 

the number of adders and the size of each adder when the multiplier input size doubles. 

Whereas in case of the proposed work with radix-8 structure, the effective increase in the 

design area is only three times because of the reduction in the number of partial products 

and the separating out of some group of bits and performing simple additions along with 

the simple BEC like structures. The approximate increase in the delay of the multiplier 

structure in [41] is two times with the increase in multiplier size by two times because of 



 

96 
 

the increase in number of partial products by two times and the increase in the size of the 

additions at each stage. Partial products generated using the architecture in [41] are {4, 8, 

16, 32} and using the proposed architecture are {3, 5, 11, 21} for the 8-, 16-, 32-, and 64-

bit multipliers respectively. Designing wider multipliers using higher radix structures 

further reduces the number of partial products and hence the delay and the cost of 

computation. All the results including the delay, area, and power values for the 8-bit, 16-

bit, 32-bit, and 64-bit multipliers, synthesized and post-layout design completed, with the 

proposed architecture and the modified Booth architecture, are included in the Table 4.8.  

Projected performance and cost numbers for the proposed 32-bit and 64-bit multiplier 

architectures shows significant improvement compared to the conventional Booth 

multiplier design of 16-bit and 32-bit wide. 16 x 16 multiplier using the proposed radix-8 

architecture outperformed the parallel 16 x 16 multiplier with radix-10 BCD multiplier 

presented in [49] when the total power consumptions are compared, even with the non-

combinational power consumption due to the registers at the inputs and outputs included. 

If the frequency is also considered for scaling down the power consumption for the 

design in [49] to make more appropriate comparison to be performed at the respective 

highest frequencies, the power consumption, PDP, and EDP values for the 16-bit 

multiplier with the proposed radix-8 architecture are very small in comparison.   

Table 4.8  Performance comparison of the multipliers 

Multiplier Width 

(N x N) 

(N-bits) 

Tech. Freq.  

(MHz) / 

Period 

(ns) 

Supply 

Voltage 

(V) 

Data 

Arrival 

Time 

(ns) 

Area 

(𝜇m)2 

Total 

Power 

(mW) 

ADP 

(m2-s) 

x 10-21 

PDP 

(E/op) 

(W-s) 

(
𝑝𝐽

𝑜𝑝
) 

 

EDP 

(J-s) 

x 10-21 

Boppana2 

64 

32nm 

(Post-) 

f=100 

1.05 

7.81 100764a 10.169b 786967 79.42 620.269 

fhighest = 

104.2 

6.95 100993a 10.447b 701901 72.61 504.616 

32nm f=100 9.98 85708a 7.478b 855366 74.63 744.818 
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(This 

work) 

2022 

 

(Pre-) fhighest = 

104.2 

9.57 85771a 7.625b 820828 72.97 698.335 

32 

32nm 

(Post-) 

f=200 4.44 25106a 3.194b 111471 14.181 62.965 

fhighest = 

207.5 

4.22 25107a 3.26b 105952 13.757 58.055 

32nm 

(Pre-) 

f=200 4.97 22776a 2.647b 113197 13.156 66.050 

fhighest = 

207.5 

4.79 22905a 2.704b 109715 12.952 62.041 

 

 

16 

32nm 

(Post-) 

f=250 2.74 5777a 0.881b 15829 2.388 6.614 

fhighest = 

333.3 

2.49 5973a 1.089b 14880 2.712 6.752 

32nm 

(Pre-) 

f=250 3.4 5725a 0.746b 19465 2.536 8.624 

fhighest = 

333.3 

2.98 5976a 0.928b 17808 2.765 8.241 

 

 

8 

32nm 

(Post-) 

f=250 1.77 1840a 0.298b 3257 0.527 0.934 

fhighest = 

476.2 

1.69 1875a 0.455b 3169 0.769 1.300 

32nm 

(Pre-) 

f=250 2.17 1815a 0.271b 3939 0.588 1.276 

fhighest = 

476.2 

2.07 1860a 0.413b 3850 0.854 1.767 

           

Estimated 

(Boppana 

et al. [41]) 

64 

32nm 

(Post-) 

fhighest = 

~ 117.5 

- ~ 8.48 

(2x 32b) 

~ 95040 

(4x 32b) 

- ~ 805939 - - 

32nm 

(Pre-) 

fhighest = 

~ 101.3 

- ~ 9.84 

(2x 32b) 

~ 101504 

(4x 32b) 

- ~ 998799 - - 

32 

32nm 

(Post-) 

fhighest = 

~ 234.2 

- ~ 4.24 

(2x 16b) 

~ 23760 

(4x 16b) 

- ~ 100742 - - 

32nm 

(Pre-) 

fhighest = 

~ 202.0 

- ~ 4.92 

(2x 16b) 

~ 25376 

(4x 16b) 

- ~ 124850 - - 

16 

32nm 

(Post-) 

fhighest = 

~ 465.1 

- ~ 2.12 

(2x 8b) 

~ 5940 

(4x 8b) 

- ~ 12593 - - 

32nm 

(Pre-) 

fhighest = 

~ 401.6 

- ~ 2.46 

(2x 8b) 

~ 6344 

(4x 8b) 

- ~ 15606 - - 

(Boppana 

et al. [41]) 

(This 

work) 

2019 

 

8 

32nm 

(Post-) 

f=500 

1.05 

1.19 1177a 0.342b 1401 0.407 0.484 

fhighest = 

793.6 

1.06 1485a 0.526b 1574 0.558 0.591 

32nm 

(Pre-) 

f=500 1.48 1249a 0.340b 1849 0.503 0.745 

fhighest = 

793.6 

1.23 1586a 0.509b 1951 0.625 0.769 

           

[22]  

NR  

Wallace c 

2020 

64 

65nm 

(Pre-) 

57.1 

1.0 

17.5 78194.5 3.3539 1368404 65.6 1148.00 

32 109.9 9.1 23562.8 1.9386 214422 17.6 160.16 

16 196.2 5.1 6716.3 1.0661 34253 5.4 27.54 

8 344.9 2.9 2075.8 0.6458 6020 1.9 5.51 

[22]  

NR  

Dadda c 

2020 

64 

65nm 

(Pre-) 

57.8 

1.0 

17.3 75280.9 3.3762 1302360 58.4 1010.32 

32 111.1 9 20803.6 1.8313 187232 16.5 148.50 

16 208.3 4.8 6627.9 1.1083 31814 5.3 25.44 

8 357.1 2.8 2033.7 0.6746 5694 1.9 5.32 

[22]  

NR-SO 

Wallace c 

2020 

64 

65nm 

(Pre-) 

57.8 

1.0 

17.3 69218.2 2.9294 1197475 50.7 877.11 

32 109.9 9.1 21002.8 1.7806 191126 16.2 147.42 

16 196.0 5.1 6113.1 0.9968 31177 5.1 26.01 

8 344.8 2.9 1947.9 0.6384 5649 1.8 5.22 

[22]  

NR-SO 

64 

65nm 

57.8 

1.0 

17.3 65187.2 2.8878 1127739 50.0 865.00 

32 111.1 9 18092.4 1.6836 162832 15.2 136.80 
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Dadda c 

2020 

16 (Pre-) 208.3 4.8 5975.8 1.0821 28684 5.2 24.96 

8 357.1 2.8 1878.2 0.6796 5259 1.9 5.32 

[22]  

Baseline c 

(Radix-4) 

64 

65nm 

(Pre-) 

38.3 

1.0 

26.1 128500.8 8.8409 3353871 230.8 6023.88 

32 76.9 13 32765.2 2.5130 425948 32.7 425.10 

16 149.3 6.7 8006.4 0.9146 53643 6.1 40.87 

8 302.8 3.3 2333.8 0.9277 7702 3.1 10.23 

           

Gorgin et 

al. [49] 

2017 
16 

TSMC 

130nm 

(Pre-) 

min. 

power 

 

1.5 

2.462 

(10)c 

- 10.9 

(90)c 

- 26.836 

 

66.07 

min. 

delay 

1.083 

(4.4)c 

- 28.9 

(240)c 

- 31.299 33.896 

Qian et al. 

[46] 

2016 
8 

45nm 

(Pre-) 
f=500 1.25 1.58 1245 0.436 1967 0.689 1.088 

           

Modified 

Booth d 

[43] [42] 

2017-18 

8 
32nm 

(Pre-) 
f=500 1.05 1.99 1470a 0.463b 2925 0.921 1.833 

           

Conv. 

Booth 

Multiplier 

32 

32nm 

(Pre-) 

 

f=125 

1.05 

7.97 38895a 3.611b 309993 28.78 229.37 

fhighest =  

133.3 

7.47 39768a 3.884b 297067 29.013 216.73 

16 

f=250 3.97 9757a 1.223b 38735 4.855 19.275 

fhighest = 

263.2 

3.78 9851 a 1.289b 37237 4.872 18.418 

8 

400 2.28 2315a 0.380b 5278 0.866 1.975 

fhighest = 

476.2  

2.07 2398a 0.453b 4964 0.938 1.941 

a Area includes the area of the input and output registers 
b Power includes the power consumption by the input and output registers 
c Actual values published 
d Performance data obtained from redesigning & synthesizing the design from the original work 

NOTE:  Area, delay, and power are normalized to 32nm @ 1.05V unless specified 
NOTE:  Pre- and Post- refers to Synthesis (Pre-layout) and PnR (Post-layout) results respectively 

 

The results published in [46], [49] are normalized to 32nm CMOS technology 

with 1.05V supply voltage, included in Table 4.8, using the following normalization 

equations [50] to make fair comparisons on various performance aspects.   

𝑇𝑑𝑛𝑜𝑟𝑚 = 𝑇𝑑  . (
32 𝑛𝑚

𝑡𝑒𝑐ℎ
) , 𝑃𝑛𝑜𝑟𝑚 = 𝑃 . (

32 𝑛𝑚

𝑡𝑒𝑐ℎ
) (
1.05

𝑉𝑡𝑒𝑐ℎ
)
2

, 𝐴𝑟𝑒𝑎𝑛𝑜𝑟𝑚 = 𝐴𝑟𝑒𝑎 . (
32 𝑛𝑚

𝑡𝑒𝑐ℎ
)
2

 

( 4.3 ) 

Going further down towards using smaller nodes, the common scaling factor, S, 

for scaling the parameters such as width, channel length, oxide thickness, and supply 

voltage does not work since different parameters scale down in different ratios. Hence, 
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more accurate scaling should be performed using the following proportions or scaling 

factors [51], especially to scale the performance characteristics of digital designs towards 

smaller nodes, which are being mostly used in the current digital designs, to perform the 

fair comparison with the performance characteristics of the digital designs constructed 

using larger CMOS technology nodes. The following scaling factors also needed to be 

verified while scaling up/down the performance characteristics of the digital designs 

designed using smaller and advanced node technologies. 

𝐴𝑟𝑒𝑎 ∝ 𝑊 × 𝐿 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝐶𝐿)  ∝ 𝑊𝐿 × 𝐶𝑜𝑥 ∝ 𝑊𝐿 ×
𝜀𝑜𝑥
𝑡𝑜𝑥

 

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 (𝑡𝑝) ∝
𝐶𝐿𝑉𝐷𝐷

𝑘(𝑉𝐷𝐷 − 𝑉𝑇)
2
∝

𝐶𝑜𝑥𝑊𝐿 × 𝑉𝐷𝐷

𝜇𝐶𝑜𝑥
𝑊
𝐿
(𝑉𝐷𝐷 − 𝑉𝑇)

2
∝

𝐿2 × 𝑉𝐷𝐷
𝜇(𝑉𝐷𝐷 − 𝑉𝑇)

2
 

𝑃𝑜𝑤𝑒𝑟 (𝑃) =  𝐶𝐿𝑉𝐷𝐷
2𝑓 ∝

𝑊𝐿
𝜀𝑜𝑥
𝑡𝑜𝑥

𝑉𝐷𝐷
2

𝑡𝑝
∝
𝑊𝐿

𝜀𝑜𝑥
𝑡𝑜𝑥

𝑉𝐷𝐷
2

𝐿2 × 𝑉𝐷𝐷
𝜇(𝑉𝐷𝐷 − 𝑉𝑇)

2

∝
𝑊 × 𝑉𝐷𝐷 × (𝑉𝐷𝐷 − 𝑉𝑇)

2

𝐿 × 𝑡𝑜𝑥
 

( 4.4 ) 

 

Where, 𝑊 represents width of a MOS transistor, 𝐿 represents the length of the  

MOS transistor,  𝑡𝑜𝑥 represents the oxide thickness,  𝑉𝐷𝐷 represents the supply voltage, 

𝑉𝑇 represents the respective MOS threshold voltage, 𝜇 represents the mobility of the 

respective carriers, and 𝜀𝑜𝑥  represents the permittivity of the gate oxide. 
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5 Conclusions and Future Work 

5.1  Conclusion  

Optimized 8 x 8 Booth multiplier architecture with optimized B2C, optimized 

Booth encoding, and parallel addition is presented, and the performance is compared with 

the state-of-the-art modified Booth multipliers. Significant improvement in speed 

performance is observed with less design cost and power consumption. A simple and 

novel way of sign number multiplication with radix-8 structure is presented by designing 

an overhead block containing non-trivial computation block with reduced number of 

partial products. The careful grouping of the partial products for the addition reduces the 

design area while increasing the speed. The performance measures along with the cost 

associated for the 32-bit and 64-bit multipliers for the state-of-the-art optimized Booth 

multipliers are compared with the designs using the proposed radix-8 structure. It can be 

concluded that the new multiplier architecture with radix-8 structure has a remarkable 

advantage of speed while using the less hardware for the large width sign number 

multiplications and designing the wide multipliers with higher radix such as radix-16, -32, 

-64, etc., will be very promising to perform faster and efficient operations.  
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5.2 Major Contributions  

• Designed an optimized B2C with low-power and low-area to perform the two’s 

complement operation. The optimized design presented in this work has nearly 

10.5% and 10.1% of improvement in area and power when compared to the 

state-of-the-art B2C design designed and synthesized using the similar 

technology and supply voltage.  

• Designed an optimized Booth encoder with inherent multiplexer operation for 

faster and low-cost partial product generation in the case of modified 8 x 8 

Booth multiplier implementation. 

• Developed a new grouping strategy for the reduction of the parallel products by 

deploying the parallel adders to reduce the number of stages of additions from 

three to two in the case of modified 8 x 8 Booth multiplier implementation 

when compared to the state-of-the-art low PDP Booth multiplier design.  

• Implemented SQCS-CLA for faster partial product reduction to get quicker 

final product in the case of both the proposed works: 1. Modified 8 x 8 Booth 

multiplier design, and 2. Proposed novel radix-8 architecture for the signed 

number multiplication.  

• Developed a simple and novel radix-8 structure, with 3-bit grouping, for the 

signed number multiplication. Designed 8 x 8, 16 x 16, 32 x 32, and 64 x 64 

multipliers using the proposed radix-8 architecture with the non-trivial blocks 

and an optimized strategy of partial product reduction. Number of {partial 
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products, additions} are reduced from {16, 15} and {32, 31} to {11, 13} and 

{21, 23} for the 32-bit and 64-bit multipliers using the proposed radix-8 

structure when compared with the state-of-the-art low PDP Booth multiplier 

design. 

• Performed synthesis and placement & routing (PnR) on the proposed modified 

8 x 8 Booth multiplier design and  the proposed radix-8 structure based 8 x 8, 

16 x 16, 32 x 32, and 64 x 64 signed multiplier designs. Comparing the 

performance results of the 32-bit and 64-bit wide multipliers designed using the 

simple novel radix-8 structure with the estimated performance measurements 

for the state-of-the-art optimized Booth multiplier design presented in this work, 

(synthesize and PnR)ed, reduction in delay by (2.64%, 0.47%) and (2.74%, 

18.04%) respectively, and reduction in area-delay-product by (12.12%, -5.17%) 

and (17.82%, 12.91%) respectively is achieved.  

5.3 Future Work 

• Designing more efficient grouping strategies for efficient partial product 

reduction. 

• Designing and deploying faster and efficient large width adders inside non-

trivial computation block and in the partial product reduction stages. 

• Designing and deploying faster yet efficient binary 2’s complement blocks to 

reduce the computational latency.  
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• Extending the use of the proposed idea by designing the sign number multiplier 

with higher radix structures to further improve the speed and efficiency of the 

computation. 

• All the designs are designed using the RVT cells at low drive strength of ‘1’ 

unit. Hence, there is still more room for improving the speed reducing the 

power by deploying the combination of high drive strength standard cells, low-

VT (LVT), and high-VT (HVT) cells. 

• Using Synopsys Prime Time (PT) tool, static timing analysis (STA) should be 

performed to verify if the timing goal set is achievable in pre-PnR stage and in 

post-PnR stage for accurate and industry gold-standard timing signoff.  

• Need to come up with more accurate way of scaling down/up the performance 

characteristics, such as delay, area, and power, of the designs to make fair 

comparisons between various designs designed using various technologies at 

their respective supply voltages.  
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6 List of Abbreviations 

CCC Control-Compute-Communicate 

ADC Analog-to-Digital Converter 

CAD Computer Aided Design 

DSP Digital Signal Processing 

FIR Finite Impulse Response 

IIR Infinite Impulse Response 

LMS Least Mean Squares 

RLS Recursive Least Mean Squares 

FFT Fast Fourier Transform 

CPU Central Processing Unit 

GPU Graphics Processing Unit 

CAGR Compound Annual Growth Rate 

ANT All-N-Transistors 

MODL Multiple Output Domino Logic 

ASIC Application Specific Integrated Circuits 

PPG Partial Product Generation 

PPR Partial Product Reduction 

PPA Partial Product Array 
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PDP Power-Delay Product 

PDA Power-Delay-Area Product 

EDP Energy-Delay Product 

WTM Wallace Tree Multiplier 

CBMW Counter-based Modular Wallace (tree multiplier) 

RCW Reduced Complexity Wallace (tree multiplier) 

R4B-RCW Radix-4 Booth-Reduced Complexity Wallace (tree multiplier) 

CBW Counter-Based Wallace (tree multiplier) 

MBE Modified Booth Encoding 

TDM Three-Dimensional-reduction-Method 

MLCSMA Multiple-Level Conditional-Sum Adder 

CSMA Conditional-Sum Adder 

CCA Conditional-Carry Adder 

PPRT Partial Product Reduction Tree 

B2C Binary 2’s Complement 

BEC Binary Excess-1 Code 

EAP Energy-Area Product 

CPA Carry Propagation Adder 

RCA Ripple Carry Adder 

SQCS Square root Carry Select  

CLA Carry Look-ahead Adder 

CPA Carry Propagating Adder 

RVT Regular Voltage Threshold 
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HVT High Voltage Threshold 

LVT Low Voltage Threshold 

DC Design Compiler (Synopsys RTL tool) 

PnR Placement and Routing 

ICC IC Compiler (Synopsys PnR tool) 

PT Prime Time (Synopsys STA tool) 

STA Static Timing Analysis 

DAT Data Arrival Time 

NR RCA-less optimization (Non-RCA) 

NR-SO Optimized Sign extension without intermediary RCAs 
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