42,011 research outputs found

    BattRAE: Bidimensional Attention-Based Recursive Autoencoders for Learning Bilingual Phrase Embeddings

    Full text link
    In this paper, we propose a bidimensional attention based recursive autoencoder (BattRAE) to integrate clues and sourcetarget interactions at multiple levels of granularity into bilingual phrase representations. We employ recursive autoencoders to generate tree structures of phrases with embeddings at different levels of granularity (e.g., words, sub-phrases and phrases). Over these embeddings on the source and target side, we introduce a bidimensional attention network to learn their interactions encoded in a bidimensional attention matrix, from which we extract two soft attention weight distributions simultaneously. These weight distributions enable BattRAE to generate compositive phrase representations via convolution. Based on the learned phrase representations, we further use a bilinear neural model, trained via a max-margin method, to measure bilingual semantic similarity. To evaluate the effectiveness of BattRAE, we incorporate this semantic similarity as an additional feature into a state-of-the-art SMT system. Extensive experiments on NIST Chinese-English test sets show that our model achieves a substantial improvement of up to 1.63 BLEU points on average over the baseline.Comment: 7 pages, accepted by AAAI 201

    Multi-engine machine translation by recursive sentence decomposition

    Get PDF
    In this paper, we present a novel approach to combine the outputs of multiple MT engines into a consensus translation. In contrast to previous Multi-Engine Machine Translation (MEMT) techniques, we do not rely on word alignments of output hypotheses, but prepare the input sentence for multi-engine processing. We do this by using a recursive decomposition algorithm that produces simple chunks as input to the MT engines. A consensus translation is produced by combining the best chunk translations, selected through majority voting, a trigram language model score and a confidence score assigned to each MT engine. We report statistically significant relative improvements of up to 9% BLEU score in experiments (English→Spanish) carried out on an 800-sentence test set extracted from the Penn-II Treebank

    Reducing “Structure from Motion”: a general framework for dynamic vision. 2. Implementation and experimental assessment

    Get PDF
    For pt.1 see ibid., p.933-42 (1998). A number of methods have been proposed in the literature for estimating scene-structure and ego-motion from a sequence of images using dynamical models. Despite the fact that all methods may be derived from a “natural” dynamical model within a unified framework, from an engineering perspective there are a number of trade-offs that lead to different strategies depending upon the applications and the goals one is targeting. We want to characterize and compare the properties of each model such that the engineer may choose the one best suited to the specific application. We analyze the properties of filters derived from each dynamical model under a variety of experimental conditions, assess the accuracy of the estimates, their robustness to measurement noise, sensitivity to initial conditions and visual angle, effects of the bas-relief ambiguity and occlusions, dependence upon the number of image measurements and their sampling rate
    corecore