4 research outputs found

    Design of Reconfigurable Crossbar Switch for BiNoC Router

    Get PDF
    this paper presents implementation of 10x10 reconfigurable crossbar switch (RCS) architecture for Dynamic Self-Reconfigurable BiNoC Architecture for Network On Chip. Its main purpose is to increase the performance, flexibility. This paper presents a VHDL based cycle accurate register transfer level model for evaluating the, Power and Area of reconfigurable cross bar switch in BiNoC architectures. We implemented a parameterized register transfer level design of reconfigurable crossbar switch (RCS) architecture. The design is parameterized on (i) size of packets, (ii) length and width of physical links, (iii) number, and depth of arbiters, and (iv) switching technique. The paper discusses in detail the architecture and characterization of the various reconfigurable crossbar switch (RCS) architecture components. The characterized values were integrated into the VHDL based RTL design to build the cycle accurate performance model. In this paper we show the result of simple 10x10 crossbar switch .The results include VHDL simulation of RCS on Xilinx ISE 13.1 software tool

    A Scalable High-Performance Memory-Less IP Address Lookup Engine Suitable for FPGA Implementation

    Get PDF
    RÉSUMÉ La recherche d'adresse IP est une opération très importante pour les routeurs Internet modernes. De nombreuses approches dans la littérature ont été proposées pour réaliser des moteurs de recherche d'adresse IP (Address Lookup Engine – ALE), à haute performance. Les ALE existants peuvent être classés dans l’une ou l’autre de trois catégories basées sur: les mémoires ternaires adressables par le contenu (TCAM), les Trie et les émulations de TCAM. Les approches qui se basent sur des TCAM sont coûteuses et elles consomment beaucoup d'énergie. Les techniques qui exploitent les Trie ont une latence non déterministe qui nécessitent généralement des accès à une mémoire externe. Les techniques qui exploitent des émulations de TCAM combinent généralement des TCAM avec des circuits à faible coût. Dans ce mémoire, l'objectif principal est de proposer une architecture d'ALE qui permet la recherche rapide d’adresses IP et qui apporte une solution aux principales lacunes des techniques basées sur des TCAM et sur des Trie. Atteindre une vitesse de traitement suffisante dans l'ALE est un aspect important. Des accélérateurs matériels ont été adoptés pour obtenir une le résultat de recherche à haute vitesse. Le FPGA permettent la mise en œuvre d’accélérateurs matériels reconfigurables spécialisés. Cinq architectures d’ALE de type émulation de TCAM sont proposés dans ce mémoire : une sérielle, une parallèle, une architecture dite IP-Split, une variante appelée IP-Split-Bucket et une version de l’IP-Split-Bucket qui supporte les mises à jours. Chaque architecture est construite à partir de l’architecture précédente de manière progressive dans le but d’en améliorer les performances. L'architecture sérielle utilise des mémoires pour stocker la table d’adresses de transmission et un comparateur pour effectuer une recherche sérielle sur les entrées. L'architecture parallèle stocke les entrées de la table dans les ressources logiques d’un FPGA, et elle emploie une recherche parallèle en utilisant N comparateurs pour une table avec N entrées. L’architecture IP-Split emploie un niveau de décodeurs pour éviter des comparaisons répétitives dans les entrées équivalentes de la table. L'architecture IP-Split-Bucket est une version améliorée de l'architecture précédente qui utilise une méthode de partitionnement visant à optimiser l'architecture IP-Split. L’IP-Split-Bucket qui supporte les mises à jour est la dernière architecture proposée. Elle soutient la mise à jour et la recherche à haute vitesse d'adresses IP. Les résultats d’implémentations montrent que l'architecture d’ALE qui offre les meilleures performances est l’IP-Split-Bucket, qui n’a pas recours à une ou plusieurs mémoires. Pour une table d’adresses de transmission IPv4 réelle comportant 524 k préfixes, l'architecture IP-Split-Bucket atteint un débit de 103,4 M paquets par seconde et elle consomme respectivement 23% et 22% des tables de conversion (LUTs) et des bascules (FFs) sur une puce Xilinx XC7V2000T.----------ABSTRACT High-performance IP address lookup is highly demanded for modern Internet routers. Many approaches in the literature describe a special purpose Address Lookup Engines (ALE), for IP address lookup. The existing ALEs can be categorised into the following techniques: Ternary Content Addressable Memories-based (TCAM-based), trie-based and TCAM-emulation. TCAM-based techniques are expensive and consume a lot of power, since they employ TCAMs in their architecture. Trie-based techniques have nondeterministic latency and external memory accesses, since they store the Forwarding Information Base (FIB) in the memory using a trie data structure. TCAM-emulation techniques commonly combine TCAMs with lower-cost circuits that handle less time-critical activities. In this thesis, the main objective is to propose an ALE architecture with fast search that addresses the main shortcomings of TCAM-based and trie-based techniques. Achieving an admissible throughput in the proposed ALE is its fundamental requirement due to the recent improvements of network systems and growth of Internet of Things (IoTs). For that matter, hardware accelerators have been adopted to achieve a high speed search. In this work, Field Programmable Gate Arrays (FPGAs) are specialized reconfigurable hardware accelerators chosen as the target platform for the ALE architecture. Five TCAM-emulation ALE architectures are proposed in this thesis: the Full-Serial, the Full-Parallel, the IP-Split, the IP-Split-Bucket and the Update-enabled IP-Split-Bucket architectures. Each architecture builds on the previous one with progressive improvements. The Full-Serial architecture employs memories to store the FIB and one comparator to perform a serial search on the FIB entries. The Full-Parallel architecture stores the FIB entries into the logical resources of the FPGA and employs a parallel search using one comparator for each FIB entry. The IP-Split architecture employs a level of decoders to avoid repetitive comparisons in the equivalent entries of the FIB. The IP-Split-Bucket architecture is an upgraded version of the previous architecture using a partitioning scheme aiming to optimize the IP-Split architecture. Finally, the Update-enabled IP-Split-Bucket supports high-update rate IP address lookup. The most efficient proposed architecture is the IP-Split-Bucket, which is a novel high-performance memory-less ALE. For a real-world FIB with 524 k IPv4 prefixes, IP-Split-Bucket achieves a throughput of 103.4M packets per second and consumes respectively 23% and 22% of the Look Up Tables (LUTs) and Flip-Flops (FFs) of a Xilinx XC7V2000T chip

    Analysis and acceleration of data mining algorithms on high performance reconfigurable computing platforms

    Get PDF
    With the continued development of computation and communication technologies, we are overwhelmed with electronic data. Ubiquitous data in governments, commercial enterprises, universities and various organizations records our decisions, transactions and thoughts. The data collection rate is undergoing tremendous increase. And there is no end in sight. On one hand, as the volume of data explodes, the gap between the human being\u27s understanding of the data and the knowledge hidden in the data will be enlarged. The algorithms and techniques, collectively known as data mining, are emerged to bridge the gap. The data mining algorithms are usually data-compute intensive. On the other hand, the overall computing system performance is not increasing at an equal rate. Consequently, there is strong requirement to design special computing systems to accelerate data mining applications. FPGAs based High Performance Reconfigurable Computing(HPRC) system is to design optimized hardware architecture for a given problem. The increased gate count, arithmetic capability, and other features of modern FPGAs now allow researcher to implement highly complicated reconfigurable computational architecture. In contrast with ASICs, FPGAs have the advantages of low power, low nonrecurring engineering costs, high design flexibility and the ability to update functionality after shipping. In this thesis, we first design the architectures for data intensive and data-compute intensive applications respectively. Then we present a general HPRC framework for data mining applications: Frequent Pattern Mining(FPM) is a data-compute intensive application which is to find commonly occurring itemsets in databases. We use systolic tree architecture in FPGA hardware to mimic the internal memory layout of FP-growth algorithm while achieving higher throughput. The experimental results demonstrate that the proposed hardware architecture is faster than the software approach. Sparse Matrix-Vector Multiplication(SMVM) is a data-intensive application which is an important computing core in many applications. We present a scalable and efficient FPGA-based SMVM architecture which can handle arbitrary matrix sizes without preprocessing or zero padding and can be dynamically expanded based on the available I/O bandwidth. The experimental results using a commercial FPGA-based acceleration system demonstrate that our reconfigurable SMVM engine is more efficient than existing state-of-the-art, with speedups over a highly optimized software implementation of 2.5X to 6.5X, depending on the sparsity of the input benchmark. Accelerating Text Classification Using SMVM is performed in Convey HC-1 HPRC platform. The SMVM engines are deployed into multiple FPGA chips. Text documents are represented as large sparse matrices using Vector Space Model(VSM). The k-nearest neighbor algorithm uses SMVM to perform classification simultaneously on multiple FPGAs. Our experiment shows that the classification in Convey HC-1 is several times faster compared with the traditional computing architecture. MapReduce Reconfigurable Framework for Data Mining Applications is a pipelined and high performance framework for FPGA design based on the MapReduce model. Our goal is to lessen the FPGA programmer burden while minimizing performance degradation. The designer only need focus on the mapper and reducer modules design. We redesigned the SMVM architecture using the MapReduce Framework. The manual VHDL code is only 15 percent of that used in the customized architecture
    corecore