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RÉSUMÉ 

La recherche d'adresse IP est une opération très importante pour les routeurs Internet modernes. 

De nombreuses approches dans la littérature ont été proposées pour réaliser des moteurs de 

recherche d'adresse IP (Address Lookup Engine – ALE), à haute performance. Les ALE existants 

peuvent être classés dans l’une ou l’autre de trois catégories basées sur: les mémoires ternaires 

adressables par le contenu (TCAM), les Trie et les émulations de TCAM. Les approches qui se 

basent sur des TCAM sont coûteuses et elles consomment beaucoup d'énergie. Les techniques qui 

exploitent les Trie ont une latence non déterministe qui nécessitent généralement des accès à une 

mémoire externe. Les techniques qui exploitent des émulations de TCAM combinent 

généralement des TCAM avec des circuits à faible coût. Dans ce mémoire, l'objectif principal est 

de proposer une architecture d'ALE qui permet la recherche rapide d’adresses IP et qui apporte 

une solution aux principales lacunes des techniques basées sur des TCAM et sur des Trie. 

Atteindre une vitesse de traitement suffisante dans l'ALE est un aspect important. Des 

accélérateurs matériels ont été adoptés pour obtenir une le résultat de recherche à haute vitesse. 

Le FPGA permettent la mise en œuvre d’accélérateurs matériels reconfigurables spécialisés. Cinq 

architectures d’ALE de type émulation de TCAM sont proposés dans ce mémoire : une sérielle, 

une parallèle, une architecture dite IP-Split, une variante appelée IP-Split-Bucket et une version 

de l’IP-Split-Bucket qui supporte les mises à jours. Chaque architecture est construite à partir de 

l’architecture précédente de manière progressive dans le but d’en améliorer les performances.  

L'architecture sérielle utilise des mémoires pour stocker la table d’adresses de transmission et un 

comparateur pour effectuer une recherche sérielle sur les entrées. L'architecture parallèle stocke 

les entrées de la table dans les ressources logiques d’un FPGA, et elle emploie une recherche 

parallèle en utilisant N comparateurs pour une table avec N entrées. L’architecture IP-Split 

emploie un niveau de décodeurs pour éviter des comparaisons répétitives dans les entrées 

équivalentes de la table. L'architecture IP-Split-Bucket est une version améliorée de l'architecture 

précédente qui utilise une méthode de partitionnement visant à optimiser l'architecture IP-Split. 

L’IP-Split-Bucket qui supporte les mises à jour est la dernière architecture proposée. Elle soutient 

la mise à jour et la recherche à haute vitesse d'adresses IP. Les résultats d’implémentations 

montrent que l'architecture d’ALE qui offre les meilleures performances est l’IP-Split-Bucket, 
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qui n’a pas recours à une ou plusieurs mémoires. Pour une table d’adresses de transmission IPv4 

réelle comportant 524 k préfixes, l'architecture IP-Split-Bucket atteint un débit de 103,4 M 

paquets par seconde et elle consomme respectivement 23% et 22% des tables de conversion 

(LUTs) et des bascules (FFs) sur une puce Xilinx XC7V2000T. 
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ABSTRACT 

High-performance IP address lookup is highly demanded for modern Internet routers. Many 

approaches in the literature describe a special purpose Address Lookup Engines (ALE), for IP 

address lookup. The existing ALEs can be categorised into the following techniques: Ternary 

Content Addressable Memories-based (TCAM-based), trie-based and TCAM-emulation. TCAM-

based techniques are expensive and consume a lot of power, since they employ TCAMs in their 

architecture. Trie-based techniques have nondeterministic latency and external memory accesses, 

since they store the Forwarding Information Base (FIB) in the memory using a trie data structure. 

TCAM-emulation techniques commonly combine TCAMs with lower-cost circuits that handle 

less time-critical activities. In this thesis, the main objective is to propose an ALE architecture 

with fast search that addresses the main shortcomings of TCAM-based and trie-based techniques.  

Achieving an admissible throughput in the proposed ALE is its fundamental requirement due to 

the recent improvements of network systems and growth of Internet of Things (IoTs). For that 

matter, hardware accelerators have been adopted to achieve a high speed search. In this work, 

Field Programmable Gate Arrays (FPGAs) are specialized reconfigurable hardware accelerators 

chosen as the target platform for the ALE architecture. Five TCAM-emulation ALE architectures 

are proposed in this thesis: the Full-Serial, the Full-Parallel, the IP-Split, the IP-Split-Bucket and 

the Update-enabled IP-Split-Bucket architectures. Each architecture builds on the previous one 

with progressive improvements.  

The Full-Serial architecture employs memories to store the FIB and one comparator to perform a 

serial search on the FIB entries. The Full-Parallel architecture stores the FIB entries into the 

logical resources of the FPGA and employs a parallel search using one comparator for each FIB 

entry. The IP-Split architecture employs a level of decoders to avoid repetitive comparisons in the 

equivalent entries of the FIB. The IP-Split-Bucket architecture is an upgraded version of the 

previous architecture using a partitioning scheme aiming to optimize the IP-Split architecture. 

Finally, the Update-enabled IP-Split-Bucket supports high-update rate IP address lookup. The 

most efficient proposed architecture is the IP-Split-Bucket, which is a novel high-performance 

memory-less ALE. For a real-world FIB with 524 k IPv4 prefixes, IP-Split-Bucket achieves a 

throughput of 103.4M packets per second and consumes respectively 23% and 22% of the Look 

Up Tables (LUTs) and Flip-Flops (FFs) of a Xilinx XC7V2000T chip.  
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CHAPTER 1 INTRODUCTION 

1.1 Context 

A router is a network device that is responsible for routing data packets from their source host to 

their destination host. As shown in Figure 1.1, a router consists of two functional components: 

the control and data planes. The control plane deals with the system configuration and the update 

information [1]. It uses the routing table information of different protocols such as Routing 

Information Protocol (RIP), Open Shortest Path First (OSPF) and Border Gateway Protocol 

(BGP) and removes non-essential routes to build a Forwarding Information Base (FIB) [2]. A 

FIB is a table stored in the router’s memory that lists the routing information: destination IP 

address, prefix size and Next Hop Information (NHI) [2]. Every update in the protocol routing 

tables leads to an update of the FIB. The data plane uses the information extracted from the FIB 

table to forward a data packet to its proper next node. A router has an Address Lookup Engine 

(ALE) in its data plane, which is a special purpose engine that performs IP address lookup. IP 

address lookup is a process that determines the next node to which a packet must be sent in order 

to reach its destination. The ALE performs the Longest Prefix Match (LPM) algorithm on the 

FIB. The LPM algorithm receives the destination IP address of the incoming packet as an input. 

This algorithm finds a match with a FIB entry that has the largest prefix size. Next, the ALE 

returns the NHI of the match that defines the output port number.  

 

Figure 1.1: Router functional components [3] 

R
o

u
ti

n
g

 
P

ro
to

co
l

FIB 
Information

Construct and
Update the FIB

OSPF, BGP, RIP, …



2 

 

 

An example FIB is shown in Table 1.1, consisting of three columns. The first column contains 

the destination IP addresses known by the router, the second column defines the prefix size of 

each entry and the third column is the NHI that determines the output port number of the router 

corresponding to each entry. There is a special entry in every FIB that determines the default 

route. The default route is used when the destination IP address of the incoming packet is 

unknown to the router. The prefix size of the default route is equal to zero and its NHI is the 

default port number. Suppose an IP address lookup is performed for an incoming packet with 

destination IP address of 200.103.124.180 and the FIB shown in Table 1.1. Two matches are 

found: one match with the entry #2 with prefix size of 24 and another match with the entry #4 of 

the FIB with prefix size of 8. Therefore, since the prefix size of the entry #2 is larger than the 

entry #4, it is reported as the LPM output. Thus, the router sends the packet on port #4. 

Table 1.1: A sample FIB 

Entry Destination IP addresses Prefix Size NHI 

#1 132.207.153.197 32 5 

#2 200.103.124.1 24 4 

#3 132.207.123.67 16 1 

#4 200.156.46.200 8 3 

#5 0.0.0.0 0 Out of range output port 

 

1.2 Motivation 

The ever-increasing speed of digital networks demands a high performance realization of LPM in 

network switches and routers. 5G is the fifth generation for mobile networks that meet new 

demands of throughput and latency for the next generation technology. Upcoming network 

devices, including ALEs, should be able to keep up with the performance of the 5G technology. 

The data rate of 5G technology is up to 10 Gbps for hundreds of active users at once [4], while its 

latency is in the order of the millisecond [5] [6].  

To respect the constraints of the 5G technology, the performance of the ALE is evaluated using 

two categories. The first category concerns the IP address lookup and the second category 
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concerns updating the FIB. In the first category, there are two metrics for evaluating the 

performance of the IP address lookup: Lookup Latency (LL) and Lookup Throughput (LT). LL is 

the delay between the arrival of one packet to the ALE until the corresponding information of the 

LPM is available. LT is the number of incoming IP addresses handled in every time unit for one 

ALE. In the second category, there are two metrics for evaluating the performance of the FIB 

update: Update Latency (UL) and Update Throughput (UT). UL is the update delay, which 

measures the amount of time it takes from placing an update request to its actual occurrence. UT 

is the number of updates handled in a time unit for an ALE.  

The control plane of a router can receive three types of update information: Addition (A), 

Modification (M) and Delete (D). For an addition, a new IP address along with its NHI and prefix 

size information is added to the FIB. In a modification, only the NHI corresponding to the match 

is revised. In a delete, the entry corresponding to that address is removed from the FIB 

completely. The latency and throughput can be measured for each type of update: ULA, UTA, 

ULM, UTM, ULD, UTD. ULA and UTA are the update latency and update throughput of the 

addition, respectively. ULM is the update latency of the modification while UTM corresponds to 

the update throughput of the modification. ULD and UTD are dedicated to the update latency of 

delete and update throughput of delete, respectively. Future ALEs should meet the requirements 

of 5G technology in terms of LL and LT, and their update mechanism should respect the 

constraints of ULA, UTA, ULM, UTM, ULD and UTD.  

Apart from performance, another requirement for ALEs designed for 5G technology is to support 

the growth of the Internet of Things (IoTs). The IoT is the network and communication of the 

internet-enabled devices, systems, vehicles and other items that are connected to the internet. Due 

to the ever-increasing growth of the IoT, there will be a great demand for more IP addresses and 

thus larger FIBs in the routers [7]. Currently the FIB size for IPv4 addresses is near 500 k entries 

while for IPv6 it is around 26 k entries [8]. In the near future, the number of IPv4 addresses is 

expected to increase up to 2 M entries causing the depletion of IPv4 addresses [9]. This will 

likely cause the number of IPv6 entries to increase rapidly instead [10]. In all cases, future ALEs 

will have to support FIBs with a very large number of entries.  
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1.3 Objectives 

The existing approaches for IP lookup can be categorized into three types: Content Addressable 

Memory (CAM)-based [11], [12], [13], and trie-based search techniques [14], [15], [16], [17] and 

CAM-emulation [18], [19], [20], [21]. CAM is a special type of high-speed memory that has the 

ability to search its entire contents in one clock cycle. CAM-based techniques suffer from high 

power consumption and high cost of CAMs. Trie-based techniques employ the trie data structure 

in their design which causes nondeterministic latency and external memory accesses. CAM-

emulation techniques emulate the CAM functionality to avoid the shortcomings of CAM-based 

techniques.  

In this thesis, we propose multiple high-performance ALE architectures that support large FIB 

tables. We suggest a novel architecture using CAM-emulation techniques to avoid the limitations 

of CAM-based and trie-based techniques. The proposed architectures for ALEs should meet the 

LL and LT requirements of the 5G technology and constraints of a potential next generation 

designs in terms of FIB sizes. Our design should support a FIB with a size of around 500 k 

entries for IPv4 addresses. In terms of LT, IP addresses normally arrive at a router at a rate of 

between 150 M to 250 M packets per second. The maximum acceptable LL is application 

dependent and varies between applications. 

In summary, the main objectives of this thesis are: 

 Proposing high performance architectures for IP address lookup supporting existing large 

FIBs in accordance with networks constraints in terms of LT and LL. 

 Avoid using expensive and power hungry CAMs in the design and producing comparable 

results to CAM-based approaches in terms of logical resource usage and CAM cost. 

 The proposed architectures must eliminate the drawbacks of trie-based techniques in terms of 

using external memory usage and having nondeterministic latency. 

 Simulating and synthesizing the proposed architectures and comparing their results together 

and the existing work on IP address lookup. 
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1.4 Thesis Outline 

The remainder of this thesis is organized as follows. Chapter 2 presents the existing work on IP 

address lookup and provides a comparison on the conventional approaches. Chapter 3 describes 

the proposed architectures for IP address lookup in four sections: the Full-Serial (section 3.1), the 

Full-Parallel (section 3.2), the IP-Split-Bucket (section 3.3), and the IP-Split-Bucket (section 

3.4). Chapter 4 presents the experimental results of the proposed architectures and comparison of 

the most efficient proposed architecture with CAM-based, trie-based and CAM-emulation 

techniques. Chapter 5 concludes the thesis and highlights possible directions for future work. 
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CHAPTER 2 RELATED WORK 

This chapter introduces the framework of the IP address lookup process in the ALE. It provides 

an overview of the existing work on the IP lookup categorized into three types: CAM-based, trie-

based and CAM-emulation techniques. Section 2.1 presents an overall description of the ALE 

and its structure. The remaining sections are dedicated to describing and comparing the existing 

work. 

2.1 Address Lookup Engine 

The ALE performs the IP lookup on all entries of the FIB table. As shown in Figure 2.1, the ALE 

consists of three main blocks: a Match Block (MB), a Priority Encoder Block (PEB) and a NHI 

Block (NHIB) [12], [18]. A MB searches the FIB entries for all possible matches with the 

incoming IP address. Match Lines (MLs), shown in Figure 2.1, specify whether there is a match 

in the FIB or not. For example, in case of a match in address 𝑖, 𝑀𝐿(𝑖) would be 1 otherwise it 

would be 0. A PEB receives all the MLs and selects the match with the highest priority. In a LPM 

algorithm, the prefix size determines the priority. An NHIB contains a memory storing the output 

port numbers dedicated for each entry of the FIB. The NHIB uses the address of the selected 

match and gives the next hop number as its output.  

The ALE architecture regardless of its NHIB is equivalent to a string matching engine. A string 

matching engine searches for all occurrences of an input string inside a predetermined set of 

target strings. When a match is found, the corresponding location is given as the output result. 

 

Figure 2.1: Address lookup engine [12] 
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Each string is an ordered vector of symbols of a given alphabet. Latin, Binary and DNA are 

examples of existing alphabets. High-performance string matching is required in several 

applications, particularly in real-time systems such as IP address lookup. A string matching 

engine with a binary alphabet and input string size of 32 (IPv4) or 64 (IPv6), can be applied for 

the MB and the PEB of the ALE.  

Several approaches have been proposed to implement the MB and PEB in prior work. CAM-

based techniques employ a CAM to perform the process of the MB and the PEB of the ALE [12]. 

Researchers using the trie-based techniques implement the MB using a trie data structure [14]. In 

CAM-emulation techniques, researchers emulate the CAM functionality to implement the MB 

and PEB to avoid the shortcomings of the CAM-based [22]. We review the previous approaches 

on the IP address lookup in the following sections. Section 2.2 describes the CAM-based existing 

work on IP address lookup. Section 2.3 and section 2.4 present the existing work using trie-based 

and CAM-emulation techniques, respectively.  

2.2 CAM-Based Techniques 

A CAM is a memory that acts as the opposite of a standard RAM. A RAM receives an input 

address and gives the data stored in the corresponding address. On the other hand, a CAM 

receives a data as an input and passes the address of the data item, if it is present. In a CAM 

search for an entry, there are three possible cases for a result: 

1. If a match is found, the address of the match is the output. For some implementations, a CAM 

gives the incoming data along with its match address as the outputs.  

2. If no match is found, a default out-of-range address is generated as the output address or a 

special error signal is activated. 

3. If more than one match is found, the match with the highest priority is selected using a 

priority encoder. The priority of the contents is design dependent. For instance, in the LPM 

algorithm the match corresponding to the largest prefix size has the highest priority.  

CAM-based techniques thus use CAMs to perform an instant search in the entire FIB. Despite the 

high-speed search they offer, CAM-based techniques have three drawbacks: their throughput is 

limited by the CAM access speed, they consume high power, and they are expensive. Aiming to 

mitigate these drawbacks, some researchers have proposed techniques and algorithms to 



8 

 

 

minimize the size of required CAMs. These techniques commonly combine CAMs with low-cost 

circuits that handle less time-critical activities. The existing work using CAM-based techniques 

can be classified based on the CAM type. There are two types of CAMs: Binary CAMs (BCAM) 

and Ternary CAMs (TCAM). Section 2.2.1 presents the TCAM-based approaches to solve the 

LPM problem. Section 2.2.2 reviews an approach using a hybrid architecture of TCAMs and 

BCAMs for IP address lookup. 

2.2.1 TCAM-Based Techniques 

A TCAM is a type of CAM that provides a flexible search in the memory. Bits in a TCAM have 

three states: 0, 1 and ternary state. The ternary state is defined with ‘X’ and is a ‘don’t care’. It 

provides the possibility of matching a ‘1’ and a ‘0’ at the same time. For instance, the data word 

‘11X’ is a match with either ‘110’ or ‘111’. Thus, there is a possibility of finding multiple 

matches in a TCAM. Therefore, a TCAM requires a priority encoder in order to find the entry 

with the highest priority.  

There are two types of priority mechanisms in a TCAM: explicit and inherent. In an explicit 

priority mechanism, an extra field of priority is stored in the TCAM along with its contents. 

Therefore, the match with the highest priority is selected based on its priority field. This 

mechanism is easy to update but consumes more resources since an additional priority field is 

added to every entry of the table. In an inherent priority mechanism, the contents are sorted based 

on their priority. Therefore, the match with the lowest address in a TCAM is the match with the 

highest priority. This mechanism is costly to update since it requires resorting all the contents of 

the table when a new IP address is added to the table [22].  

Existing TCAM-based approaches to implement the MB and PEB of an ALE will now be 

presented in the order of their publication years. 

Zheng et al. (2004) proposed a TCAM-based ALE with high throughput and low power 

consumption [11]. They applied multiple parallel partitioned TCAM chips in their architecture to 

achieve high throughput. They divided the FIB into 16 evenly distributed groups of IP addresses. 

Each group is stored inside one of the partitions of the TCAMs. A “load-balance-based” 

algorithm is proposed to balance the lookup traffic of the 16 groups between the partitioned 
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TCAMs. In Zheng et al.’s approach one partition of the TCAM is enabled at a time to minimise 

the power consumption. For every lookup, the incoming IP address defines the enabled partition. 

The architecture is shown in Figure 2.2. It consists of four sections: index logic, priority selector, 

lookup unit and ordering logic. Index logic starts the lookup process by determining the enabled 

partition using the incoming IP address. Due to the possibility of having multiple TCAMs with 

enabled partitions, a priority selector is required to choose the least busy TCAM to perform the 

lookup. Since each lookup unit contains one TCAM chip, the problem size is decreased into a 

partition in only one of the TCAMs. The last process is the ordering logic that puts all the NHIs 

of incoming IP addresses in the same order of the incoming traffic. 

 

Figure 2.2: Architecture of multi-chip structure and chip partitioning technique [11] 

 

For implementation results, Zheng et al. have proposed an example with 4 TCAMs of size 256 

𝑘 × 36 b which contain 8 partitions. Supporting a FIB with maximum size of 819.2 k, it achieved 

a 133 MHz clock frequency. Maximum power consumption of the implementation was 4 watts 

and the maximum lookup throughput was 533 Mpps with an average processing latency of 75 ns.  

In 2005, Pao presented a new organization for commercial TCAMs of the SiberCAM family [23] 

for the purpose of IPv6 Address Lookup [12]. Available commercial TCAM chips have a fixed 

word length size of 36, 72, 144 or 288 bits. Therefore, for a 128-bit IPv6 address lookup 

technique, a commercial TCAM with word length of 144 bits is required for all prefixes 

Selector

#k

#1

#2

.

.

.

#k



10 

 

 

regardless of their actual size. Pao proposed a novel two level organization that exploits the 

prefix length distribution of real-life FIBs. Most IPv6 prefixes are less than 64 bits long. The 

largest width of the available TCAMs in the 64-bit range is 72-bit TCAMs. Therefore, a 72-bit 

TCAM is applied for the IP addresses with prefix size of 72 or less.  For prefix sizes of more than 

72 bits, the IPv6 address lookup process is split into two steps handled by 72-bit TCAMs. Pao’s 

approach leads to efficient TCAM utilization. It improves space utilization by 50% and reduces 

lookup time by 30% to 45% compared to the conventional method.  

Figure 2.3 illustrates a sample FIB organized inside a TCAM and a SRAM following Pao’s 

approach. The MB is divided into two partitions 𝑃𝑠 and 𝑃𝑙. The 𝑃𝑠 partition contains table entries 

with prefix sizes less than 72 bits (not a marker) and the first 72 bits of prefix sizes more than 72 

bits (marker). The 𝑃𝑙 partition contains the entries with prefix sizes more than 72 bits (marker). 

When a match is found in the 𝑃𝑠, it is checked whether the match is a marker or not. If the match 

is not a marker the NHI of that address is valid. Otherwise, we need to calculate the address of 

NHI based on the marker and the remaining 56 bits of the IPv6 address. 

 

Figure 2.3: Two-level organization in TCAM [12] 

 

Figure 2.4 shows the architecture of the overall system. First, a network processor sends all the 

incoming 128-bit IPv6 addresses to the input FIFO buffer. Second, the level-selection module 

00110010

10110110

011100∗

10110∗

∗(default)

.

.

.

.

.

.

10011101

011001∗

∗(dummy)

FIB

.

.

.

s v Next 
Hop

tag

1 1 1 5 1001

1 1 1 3 0110

.



11 

 

 

sends a 1-level command for the prefix sizes smaller than 72 and a 2-level command for prefix 

sizes more than 72. Moreover, it sends the search key to the TCAM for the second cycle 

operation. The pipelined TCAM and the SRAM are the third and fourth modules defining the 

NHI. The fifth module consists of two registers: B1 and B2. For a longest match with prefix sizes 

of more than 72-bits, five fields of the B2 register specify the second cycle operation. However, 

for a longest match with a prefix size less than 72 bits, the results are sent directly to the output 

FIFO buffers regardless of the operations in B2. 

 

Figure 2.4: Hardware interface for TCAM co-processor [12] 

 

2.2.2 Hybrid TCAM-BCAM Technique  

A BCAM is the simplest type of CAM with the two states 0 and 1. Applications that require an 

exact match utilize BCAMs. It is not possible to find multiple matches simultaneously in a 

BCAM. Therefore, BCAMs have a simpler comparison circuit than TCAMs. They require fewer 

transistors and have lower power consumption than TCAMs [24]. Some of the existing works 

exploit the advantages of BCAMs by replacing TCAMs with BCAMs when possible. 

In 2010, Sun and Kim proposed a hybrid TCAM-BCAM-based ALE that stored the fixed FIB 

parts in BCAMs instead of TCAMs [24]. They suggested a power efficient architecture with low 

area consumption compared to traditional TCAMs. Sun and Kim studied the distribution of IP 

address prefixes of real-world FIBs of the years 1997 to 2009. Using the characteristics of prefix 

distributions, they divided the FIB into seven groups (𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7 ) based on their 

prefix sizes. The groups 𝑃1 to 𝑃7 contain IP addresses with prefix sizes of 8, 9-15, 16, 17-23, 24, 

25-31, 32, respectively. All the IP addresses of each group are divided into two parts: fixed and 
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unfixed. The fixed part contains only the binary values (where the state of ‘X’ does not exist) that 

are handled by BCAMs. The unfixed part contains the remainder of the IP addresses that are 

implemented in TCAMs. The purpose of this division is to minimise the area and power 

consumption of the design by replacing TCAMs by BCAMs whenever possible.  

The approach presented in [24] splits the LPM process into a three-stage operation as shown in 

Figure 2.5. The first two stages are equivalent to the MB of the ALE. The first stage consists of 

parallel TCAMs and BCAMs giving the comparison results of the unfixed and fixed parts, 

respectively. The second stage is the parallel AND operations calculating the match results. The 

last stage is equivalent to the PEB that consists of two levels of priority encoders. The PEB 

consists of multiple levels of small priority encoders instead of one large priority encoder in order 

to reduce the complexity of the design. 

 

Figure 2.5: Hybrid architecture of TCAM and BCAM [24] 

 

By exploiting the characteristics of BCAMs and TCAMs, this hybrid architecture results in an 

improvement in power consumption, area usage and throughput. In terms of update, a traditional 

TCAM sorts a large FIB based on the prefix sizes. However, an update of Sun and Kim’s 

approach requires multiple small groups of IP addresses to be sorted based on their prefix sizes in 

parallel. Therefore, it reduces the number of clock cycles for an update process to 50% compared 
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to traditional TCAMs [24]. Moreover, this parallel update leads to an increase in the throughput 

of IP packet processing.    

2.3 Trie-Based Techniques  

Static RAM (SRAM) memories are more efficient than TCAMs in terms of hardware complexity 

and performance. SRAMs support higher speed, more density and lower power consumption 

compared to TCAMs, as shown in Table 2.1. Since commercially available TCAMs have fixed 

word length size with bounded depth, they are less versatile to new protocols and addressing 

techniques compared to SRAMs. Moreover, TCAMs are more expensive than SRAMs. Some 

approaches [14], [15], [16], [17], [20], [25] exploit the advantages of using SRAMs instead of 

traditional TCAMs such as trie-based techniques.  

Table 2.1: TCAM and SRAM comparison [14] 

Type of Memory 
Maximum Clock Rate 

(MHz) 

Cell Size (Number of 

Transistors) 

Power Consumption 

(Watts) 

TCAM (18 M bits Chip) 200 16 12~15 

SRAM (18 M bits Chip) 400 6 ≈ 0.19 

 

Trie-based techniques create search trees from the FIB and store the tree information in SRAMs 

using a trie data structure [14], [15], [16], [17]. Trie-based techniques require traversing the 

search tree from the root node to leaves serially. Therefore, these techniques are inherently 

slower than TCAM-based ones. As the size of the FIB increases, the memory space required to 

store the trie information grows rapidly. For large LPM problems, trie information cannot be 

stored in on-chip memories. Hence, the utilization of large external memories is inevitable [15]. 

External memory access is the main performance bottleneck for trie-based techniques. Several 

approaches attempt to minimize either the number of external memory accesses for a search or 

their latency [16], [17]. However, accessing external memory remains the main performance-

limiting factor in large trie-based designs. 

In 2006, Baker and Prasanna [17] proposed an efficient string matching approach using a trie-

based technique. They suggested a tool that provides automatic synthesis of highly efficient 

NIDS on an FPGA. This tool generates two architectures. The first architecture is a pre-decoded 
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shift and compare block. A high-level graph-based partitioning of strings is applied in the first 

architecture to reduce the size of decoders and share the shift registers. With partitioning, the goal 

is to maximize the similarity of patterns inside each partition. The second architecture is a tree-

based prefix sharing block that is responsible for reducing the redundant comparisons. Hence, the 

tool they proposed improves the area consumption and performance while reducing redundant 

comparisons. 

Hoang Le et al. (2008) exploited the advantages of SRAMs over TCAMs by implementing a 

SRAM-based IP-lookup architecture with a binary-tree-based design on FPGA. It supports a FIB 

of 228 k entries with a high throughput of 324 MLPS (multi lookup per second) while using an 

external SRAM to support a larger FIBs [14]. Figure 2.6 shows the global view of the proposed 

DUal linear Pipeline architecture for IP lookup (DuPI). The FIB is converted into a binary search 

tree according to their prefixes sizes. The tree information is stored inside a SRAM. Using two 

parallel-pipelined levels and a dual Read/Write SRAM, this architecture supports two packets at a 

time. The maximum number of pipelined stages is determined by two factors: the size of the tree 

and the maximum number of operations required to traverse the tree.  

Figure 2.7 illustrates the top-level architecture of the DuPI supporting updates. It handles two 

types of updates: in-place update and new-route update. In-place update modifies, removes or 

adds every incoming IP to the binary search tree individually after the tree is constructed. A new-

route update changes the binary search tree completely and requires a rebuild of the tree.  

In 2011, Yang, Erdem and Prasanna proposed an FPGA-based architecture for IP lookup using 

trie-based technique [15]. They suggested a Combined Length-Infix Pipelined Search (CLIPS) 

that performs a LPM in 𝑙𝑜𝑔 (𝑙 − 𝑐) phases, supposing that 𝑙 is the size of the IP address and 𝑐 is 

a design constant. Each phase has an individual local infix table mapped to an FPGA using on-

chip BRAMs and off-chip SRAMs. Using external memories, CLIPS supports very large FIBs 

with high throughput. According to the simulation results for a 9.5 M - entry IPv4 FIB, the 

CLIPS architecture supports 312 MLPS throughput while using 4 external SRAM memories with 

28 Mb of BRAM on chip memory. 
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Figure 2.6: DuPI architecture [14] 

 

Figure 2.7: Global DuPI architecture supporting updates [14] 

 

In 2013, Matoušek, et al. [16] proposed a trie-based approach introducing memory efficient 

dedicated hardware for IP address lookup. They suggested a new representation of IP prefix set in 

memory applying novel types of nodes and an algorithm to map the nodes to the tree. The 

generated tree consumes less memory compared to existing trie-based approaches. The proposed 

architecture consists of several pipelined processing elements as shown in Figure 2.8. Each 

processing element is responsible for one step of a LPM algorithm. Using dual port memories 

and two levels of pipeline, the performance is improved by a factor of two. 
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In 2016, Mun and Lim presented a trie-based IP address lookup using a Bloom filter [26]. To 

improve the efficiency, they reduced the number of false positive results of the bloom filter 

significantly using the characteristics for the trie-based techniques. Consequently, the number of 

off-chip trie accesses of non-existing nodes is reduced. They performed an IP address lookup 

using a reasonable amount of on-chip Bloom filter and off-chip trie accesses. 

 

Figure 2.8: Double level of pipelined processing elements [16] 

 

2.4  CAM-Emulation Techniques 

Some researchers proposed approaches to emulate the functionality of commercially available 

CAMs while reducing their cost and power consumption. These approaches are known as CAM-

emulation techniques [18], [19], [20], [21]. Taking advantage of FPGA configurability, 

implementing ALEs on FPGAs offers flexible and scalable IP address lookup process. The 

objective of CAM-emulation technique is to provide a fast and parallel search that addresses the 

main shortcomings of CAM-based approaches. It avoids the high hardware cost and high power 

consumption of CAMs, while providing comparable performance. In the following, some of the 

existing work on CAM-emulation technique are categorized into two groups based on the type of 

the emulated CAM: BCAM-emulation and TCAM-emulation techniques.  

2.4.1 BCAM-Emulation Techniques 

In a BCAM-based FIB, only one match is allowed at a time. Therefore, no priority encoder is 

required for a BCAM. To convert a FIB into a BCAM-based FIB, all the entries of the FIB with 

prefix size less than 32 bits should be expanded to 32-bit size. After the 32-bit expansion, it is 

possible to have multiple equivalent entries. For such a case, all entries except the one with the 

Processing Element Processing ElementIPv4/IPv6 address NHI

Dual Port 

RAM

Dual Port 

RAM

Processing Element Processing ElementIPv4/IPv6 address NHI. . .

. . .



17 

 

 

largest prefix size are removed from the FIB. As a result, the FIB is adapted to the rules of the 

LPM for IP address lookup. In this section, we discuss an existing approach that emulates the 

BCAM functionality for the LPM problem. 

In 2000, Guccione et al. in [27] proposed a run-time reconfigurable high-speed implementation 

of BCAM on FPGA called Reconfigurable CAM (RCAM). RCAM produces a faster, smaller and 

more adjustable BCAM compared to traditional ones. Figure 2.9 illustrates the MB of the RCAM 

used for IPv4 address lookup. The incoming IPv4 address is divided into 8 groups of 4 bits. The 

comparison of each group is handled by one Look Up Table (LUT). There are two intermediate 

AND gates handling the results of every four LUT. As shown in Figure 2.9, the final match result 

is the output of a final AND gate applied on the results of the intermediate AND gates. In this 

approach, the data in the FPGA are stored in LUTs instead of Flip Flops (FFs). This leads to a 

reduction in the CAM’s size and an increase in its throughput [27].  

The JBits tool is applied to reconfigure the BCAM and modify different parts of the FPGA at 

run-time, such as LUTs. Therefore, it is possible to resize dynamically the RCAM at run-time. 

This results in having a possibility of allocating and reallocating the BCAM resources at run-

time. In [27], the authors does not present implementation results for their approach except one 

test case. The maximum supported table-sizes for the RCAM implementation on the Virtex 

V1000 FPGA are 3 k and 1 k for IPv4 and IPv6 addresses, respectively [27]. However, the size 

of real-world FIBs are larger as mentioned in section 1.2. For example, the Mae-West FIB [14] is 

27 times larger than the supported table size.  

 

Figure 2.9: RCAM matching for IPv4 [27] 
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In 2004, Clark and Schimmel proposed a BCAM-emulation approach for string matching [21]. 

The authors suggested an FPGA implementation of a scalable string matching design supporting 

network constraints. Their approach allows adjusting the trade-off between capacity and 

throughput according to application requirements. They applied multi-character decoders to their 

design in order to improve performance and eliminate redundant comparisons in string matching. 

The multi-character decoder shown in Figure 2.10 processes multiple input strings at once and 

provides all possible comparison results at once using character decoders. 

 

Figure 2.10: String matching with multi-character decoder [21] 

 

2.4.2 TCAM-Emulation Techniques 

TCAM-emulation techniques have been proposed for many TCAM applications such as IP 

address lookup, to replace expensive TCAMs with low cost circuits.  

In 2002, Ditmar et al. suggested a dynamically reconfigurable FPGA-based TCAM-emulation 

design for IP characterizations [22]. IP characterization is the procedure of classifying the packets 

based on the information in their header. For an IPv6 characterization, the TCAM should be 315 

bits wide in order to contain all the information of the IPv6 header such as source address, 

destination address, incoming link, outgoing link, etc. Thus IP characterization cannot be easily 

supported by commercially available TCAMs, since a TCAM’s word length size is not usually 
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equal to 315 bits. Ditmar et al. described a TCAM-emulation design for IPv6 characterization 

with the following abilities: 

1. Supporting variable size TCAM search words 

2. Dynamic update of the FPGA using the JBits tool 

3. A hybrid explicit-inherent priority mechanism for a more efficient update  

The authors propose dividing each search word into 5 pipelined stages of blocks of 64-bits and to 

connect the blocks to each other with shift registers. Since ternary states are not required in the 

comparison in a TCAM, the blocks containing the ternary states are not stored. The reduction in 

the size of the TCAM word is shown from ‘a’ to ‘c’ in Figure 2.11. If no block is removed in the 

design, a match result is given every 5 cycle. In order to respect the 5 cycles of the match, 

deletion of a ternary block leads to two consecutive levels of pipelined stages. Consequently, 

there is a possibility of storing variable-size words. Moreover, there is no waste of space in the 

TCAM. Consequently, it is possible to store more entries. 

 

Figure 2.11: TCAM design supporting variable word size [22] 
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The general architecture of this approach is presented in Figure 2.12. The MB implemented by 

the structure shown in Figure 2.11, finds multiple matches with the incoming data (𝐷𝑎𝑡𝑎𝑖𝑛). 

Therefore, the MB is followed by the PEB to find the match with the highest priority among all 

possible matches. In order to exploit the advantages of both priority mechanisms, the authors 

employ a hybrid explicit-inherent priority encoder. As shown in Figure 2.12, beside a typical 

priority encoder they have added a switch box configured by JBits tools. The switch box is 

responsible for routing the possible matches to the priority encoder. There are 8 possible priority 

values for the entries. When there are multiple matches with the same priority value, inherent 

priority is applied.  

According to Ditmar et al., the most efficient TCAM implementation for IPv6 characterisation 

could fit a maximum of 256 320-bit words where an inherent/explicit priority mechanism is 

applied. For this case, there is a 47% utilization of the Xilinx Virtex XCV1000 FPGA while 

achieving a frequency of 17.2 MHz and throughput of 3.4 M searches per second. 

 

Figure 2.12: Physical structure of dynamic reconfigurable FPGA-based CAM [22] 

 

In 2012, Ullah et al. proposed a SRAM-based TCAM-emulation design i.e. SR-TCAM [20]. SR-

TCAM is a generic architecture, applicable to any TCAM application. As shown in Figure 2.13, 

this architecture is specified into the MB and the PEB. The entries are stored in SRAMs instead 

of TCAMs in this architecture. Therefore, the conventional TCAM is divided vertically into 𝑛 

groups. The groups are stored in corresponding SRAMs known as Bit Position Tables (BPTs) 

and Address Position Table (APT). 
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To perform the search, the incoming 𝑊-bit search-word is partitioned into 𝑛 sub-words of 𝑤 bits; 

where 𝑊 = 𝑛 × 𝑤. Each sub-word is sent to its corresponding BPT to check for its availability. 

Every BPT accepts 𝑤 bits as an input and contains all possible combinations of 𝑤 bits (2𝑤 bits). 

For example, the 𝑖𝑡ℎ sub-word of the incoming search-word is checked inside the 𝑖𝑡ℎ BPT for its 

availability. If the value of the sub-word is 𝑀, then the 𝑀𝑡ℎbit among all the 2𝑤 bits of the 

corresponding BPT is checked. The BPT has 1-bit output of 0 or 1. When the output value is ‘1’, 

a sub-word match is occurred. Otherwise, the search process is stopped.  

If all BPTs have outputs with a value of ‘1’, then the Address Position Table Address Generator 

(APTAG) will be activated. The APTAG generates a value that corresponds to a row inside the 

APT. The APT contains 2𝑤 rows of 𝐾 bits. Each row is dedicated to one possible sub-word value 

that contains all the 𝐾 addresses of the TCAM words. Therefore, every APT accepts an Address 

Position Table Address (APTA) generated by APTAG to check inside its APT. If there is a ‘1’ in 

the 𝑗𝑡ℎ position of the corresponding row, the value of 𝑗 indicates the location of the sub-word 

inside the TCAM.  

The last step is checking all the APT outputs with value of ‘1’ to find those with common 

positions. In other words, if all the matched sub-words are dedicated to the same address position, 

there is a match with the input word on that position. For that matter, a 𝐾-bit AND gate is applied 

to find all potential matches of the incoming search-word. Next, the output of the 𝐾-bit AND gate 

is sent to the PEB to find the match with the highest priority. 

Ullah et al. implemented the SR-TCAM for a table size of 512×36 on a Virtex-5 xc5vlx220 

FPGA.  It consumes 1966 LUTs and 1975 FFs. For that design, the SR-TCAM achieves a clock 

period of 48.7 ns and power consumption of 2.16 mW. 

 

Figure 2.13: Architecture of SR-TCAM [20] 

 

In 2013, Rasmussen et al. proposed a TCAM-emulation implementation of the LPM on FPGA 

[18]. The implementation of the MB is equivalent to ALE. On the other hand, the PEB is 
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implemented by two approaches: CN-LPM and G-LPM. In the CN-LPM architecture proposed 

by Rasmussen et al., the PEB is implemented by a pipelined multi-level address encoder as 

shown in Figure 2.14. The PEB has 𝑁 − 2 inputs for a FIB of 𝑁 entries. The inputs of the PEB 

are identified with 𝑀𝐿𝑚. The 𝑀𝐿𝑚 indicates the match result and its prefix length of the 

𝑚𝑡ℎ entry of the FIB. There are several comparator blocks in every level of the PEB. The 𝐶𝑖,𝑗 

block compares two of the 𝑀𝐿𝑚s to find the match with largest prefix. Therefore, the output of 

every comparator consists of: the prefix length and Least Significant Bit (LSB) of the address of 

the match. Consequently, at each level one bit is added to the previous match address, which 

provides the final address of the match with longest prefix size. The final match address is used 

by the NHI to find the output port number.  

 

Figure 2.14: PEB of TCAM-emulation LPM [18] 

 

As shown in Figure 2.15, Rasmussen et al. implemented the G-LPM architecture for local LPM 

process that is proposed by Gamache, et al. [28]. The MB consists of 𝑁 parallel comparator 

blocks (TC) containing the 𝑁 entries of the FIB. The sequential pipelined levels of the PEB are 

shown in Figure 2.15. They leave out all the matches except the match with the longest prefix 
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size in a step by step operation. For IPv6 address lookup, with prefix sizes in the range from 0 to 

128, it requires 7 levels of pipelined levels. Each pipelined level is responsible for one bit of the 

prefixes. In the first level, the validity of all the most significant bits are checked. Only the 

survivors of the comparison with a validity are sent to the next level. This process continues until 

there is a local winner (one survivor) which is the LPM between of the 𝑁 inputs. 

The FIB is divided into several sections, with each section handled by a local LPM block. As 

shown in Figure 2.16, all the local LPM blocks are processed in parallel to find the global LPM. 

Therefore, to find the global winner, all the local winners go into the same process as the local 

LPM, called global LPM. Finally, the address of the global winner is used to give the NHI as 

shown in Figure 2.16.  

This architecture supports a fast incremental update of the FIB. Moreover, there is no restriction 

in the order of storing the entries in the FIB. To compare with traditional TCAM, a FIB of 1024 

entries is implemented on the CN-LPM and G-LPM. The implementation results show an 

increase of 771% and 789% in the number of Adaptive LUTs (ALUT) of the CN-LPM and G-

LPM, respectively. 

 

Figure 2.15: Local LPM TCAM-emulation consists of MB and PEB [18] 
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Figure 2.16: Global LPM TCAM-emulation [18] 

 

In 2013, Jiang proposed a power efficient FPGA-based TCAM-emulation architecture [25]. 

Similar to Ullah et, al.’s approach [20], Jiang employed small units of SRAM-based TCAMs. 

Figure 2.17 shows the architecture without its update logic. All the FIB is partitioned into 𝑝 

parallel RAMs. The incoming search key to the MB has the size of 𝑤 that is divided into 𝑝 small 

words of size 𝑤𝑖 sent to 𝑅𝐴𝑀𝑖. The size of 𝑅𝐴𝑀𝑖  is equal to 2𝑊𝑖 × 𝑁. RAMi checks for a match 

on a small portion (𝑤𝑖) of the input world (𝑤); where the width of the word inside 𝑖𝑡ℎ RAM 

partition is equal to 𝑤𝑖. In case of a match in a partitioned RAM, there is a bit value of 1 in N-bit 

output in the location of the match. Afterwards, the results of all partitions are sent to an AND 

gate. If a match has been found on 𝑖𝑡ℎ word of the TCAM, then the 𝑖𝑡ℎ bit must remain 1 in the 

final result of the AND gate. The output of the AND gate illustrates all possible matches 

therefore it is equivalent to the output of the MB. Subsequently, all the results are sent to the PEB 

to find the match with the highest priority. In this architecture, the inherent priority mechanism is 

applied. The output port named match has the value of 1 in case of a match and the output port 

named ID defines the position of the match. 

.

.

.
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Figure 2.17: Underlying architecture scalable RAM-based TCAM [25] 

 

Figure 2.18 illustrates the top level architecture of Jiang’s approach that consists of several units. 

Each unit is equivalent to the architecture shown in Figure 2.19. Each unit contains a 𝑈 × 𝑊 

RAM-based TCAM-emulation block identical to the block shown in Figure 2.17. 

 

Figure 2.18: Global view architecture [25] 

 

As shown in Figure 2.19, the variable 𝑀𝑎𝑡𝑐ℎ𝑖𝑛of each unit specifies the existence of a match in 

the previous units. In case of a match in the previous units, the multiplexer chooses the previous 

match since it has the higher priority. Otherwise, 𝐼𝐷𝑜𝑢𝑡 is chosen based on the match that is found 

in the existing unit. The proposed architecture in [25] presented a beneficial implementation of 

TCAMs on FPGA compared to the aforementioned approaches in the literature. Jiang aimed for 

an FPGA-based design of a TCAM with efficient power consumption while supporting large 

TCAM sizes.  
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Figure 2.19: Unit architecture [25] 

 

2.5 Comparison of the Existing Work  

In this section, we present a comparison of the existing approaches in the literature. Each column 

of Table 2.2 shows one property of the applied technique. The first column specifies each 

approach by their reference number. The second column specifies the type of technique. The 

third one defines the applied method to implement the MB; whether it uses logical resources of 

FPGAs, memories, TCAM or BCAMs. The fourth column defines the type of the priority 

algorithm used for each technique (Inherent or Explicit). The fifth column defines whether the 

proposed approach supports an update mechanism to reconfigure the FPGA or not. The sixth 

column defines the FPGA family used in each approach. The sixth column determines the size of 

the tested design in each approach. The last column specifies the hardware resource usage of the 

FPGA implementation for each design.  
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Table 2.2: Comparison of existing CAM-based, trie-based and CAM-emulation techniques 

Approach Technique MB PEB Update Mechanism FPGA family Table Size LUTs FFs 

[27] 

(1990) 

BCAM-

emulation 
Cells N/A 

JBit tool 

(Configurability at 

run-time) 

Virtex 

XC2V1000 

3 k× 

32 

1 k× 

64 
- - 

[22] 

(2002) 

TCAM-

emulation 
Cell 

Explicit and 

Inherent 

JBit tool 

(Configurability at 

run-time) 

Virtex 

XCV1000 
256× 320 54 k 216 k 

[28] 

(2003) 

TCAM-

emulation 
N/A Explicit 

Fast Incremental 

Update 
Stratix IV  1024× 64 15.8 k 11.3 k 

[11] 

(2004) 

TCAM-

based 

Commercial 

TCAMs 

Commercial 

TCAMs 
N/A - - - - 

[21] 

(2004) 

BCAM-

emulation 
Cells N/A N/A 

Virtex-2 

8000 
17,537× 32 55 k 55 k 

[17] 

(2006) 
Trie-based Cells Cells N/A 

Virtex-2 

XCVP100 
602 × 20 6 k 6 k 

[24] 

(2010) 

Hybrid 

TCAM-

BCAM-

based 

Commercial 

TCAMs/BCAMs 
Inherent Parallel Update - - - - 

[15] 

(2011) 
Trie-based 

Cells, SRAM, 

External RAM 

Cells, SRAM, 

External 

RAM 

Incremental and 

Dynamical Update 

Virtex 

SX475T 
9.5 M× 32 7 k 22 k 

[20] 

(2012) 

TCAM-

emulation 
SRAM Inherent N/A 

Virtex 

XC5VLX220 
512×36 1.9 k 1.9 k 

[18] 

(2013) 

TCAM-

emulation 
N/A Explicit 

Fast Incremental 

Update 
Stratix IV  1024× 64 15.5 k 10 k 

[25] 

(2013) 

TCAM-

emulation 
RAM Inherent N/A 

Virtex 

XC7V2000T 
4096×150 182 k 182 k 

[16] 

(2013) 
Trie-based Cells  Cells  N/A 

Virtex 

XC6VSX475T 
442,748× 32 88 k 44 k 
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CHAPTER 3 PROPOSED ADDRESS LOOKUP ENGINE 

ARCHITECTURES 

In this Chapter, we propose and describe in detail four different ALE architectures: Full-Serial, 

Full-Parallel, IP-Split and IP-Split-Bucket. The advantages and drawbacks of each architecture 

are explained as well. Section 3.1 presents the Full-Serial architecture. Section 3.2 describes the 

second proposed architecture called Full-Parallel. The third architecture is the IP-Split 

architecture described in section 3.3. The last architecture is IP-Split-Bucket architecture that is 

described in section 4.4.  

3.1 Full-Serial Architecture 

The Full-Serial architecture is a memory-based TCAM-emulation architecture for IP address 

lookup. It consists of two components: a memory and a comparator. The first component is a 

memory that stores all the entries of the FIB sorted based on their prefix size. The second 

component is a single comparator that performs a serial comparison of the incoming IP address 

with the memory entries. The first match to occur in the serial search determines LPM output. 

The address of the match is determined using a counter (𝑐𝑛𝑡) that determines the position of the 

search and is incremented at every cycle. The first match can occur in the first cycle (first entry) 

or in the 𝑁𝑡ℎ  cycle (𝑁𝑡ℎ entry) for a FIB of 𝑁 entries. Therefore, the search time is equal to 𝑁 2⁄  

in average. 

Figure 3.1 shows the Full-Serial architecture applied for an IPv4 FIB with 𝑁 entries. The memory 

consists of 𝑁 entries of 40 + 𝑃 bits. Each entry contains 32 bit of IPv4 address, 𝑃 bits of prefix 

and 8 bits of NHI. Since the egress port IDs of every router has 8 bits, the NHI is stored with 8 

bits in the memory. This architecture was implemented on an FPGA using two options. In option 

A, the prefix size is stored using 32 bits (𝑝 = 32), while in option B it is stored with 6 bits (𝑝 =

6). The size of 𝑃 determines the format for storing the FIB entries and the comparator 

architecture. The following subsections describe the detailed comparator architecture of both 

proposed options for IPv4 ALE.  
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Figure 3.1: Full-Serial Architecture 

 

3.1.1 Option A 

In Option A, there is a 32-bit prefix entry with 𝑖 bits of ones followed by 32 − 𝑖 bits of zeros, 

where 𝑖 determines the prefix size. For instance, if the prefix size is equal to 10, the 10 MSB of 

the prefix are equal to one and the remaining bits are equal to zero. The architecture of the 

comparator for Option A is shown in Figure 3.2. The comparator performs a comparison of the 

𝑐𝑛𝑡𝑡ℎ entry of the FIB and the incoming IP address using two 2-input AND, one 2-input OR and 

one 32-input NOR. The first AND logic has the IP address of the 𝑐𝑛𝑡𝑡ℎ entry and its prefix as its 

inputs. Another AND logic has the incoming IP address and the prefix size of the 𝑐𝑛𝑡𝑡ℎ entry as 

its inputs. The results of the two latter AND operations are tested for equality by an OR and a 

NOR logic. In case of equality, a match is found (𝑣𝑎𝑙𝑖𝑑 = 1) and the process is terminated. 

Otherwise, 𝑐𝑛𝑡 is incremented and the same process is applied on the next entry of the FIB.  

This architecture was implemented for different FIB sizes on various FPGAs. Section 4.1 

presents the synthesis results of FPGA implementations of Full-Serial using option A.  
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Figure 3.2: Full-Serial, architecture of the comparator using option A 

 

3.1.2 Option B 

The maximum prefix size for an IPv4 addresses is 32, therefore, in option B, the prefix has 6 bits 

(𝑃 = 6). For instance, a prefix size of 15 is stored as “001111”. While option A requires twenty-

six more bits to store the same prefix size: “11111111111111100000000000000000”.  

The detailed architecture of the comparator for option B is illustrated in Figure 3.3. The 

comparator performs an OR operation on certain portion of the IP address of the 𝑐𝑛𝑡𝑡ℎ  entry and 

the incoming IP address. Since the comparison is performed on the MSB of the IP addresses, the 

ending index of each portion is equal to the length of the IP address minus one (31). The prefix 

size of the 𝑐𝑛𝑡𝑡ℎentry determines the portion size of comparison at every cycle shown as 

𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑝𝑟𝑒𝑓𝑖𝑥(𝑐𝑛𝑡)) in Figure 3.3. The comparator architecture and the format of storing the 

FIB entries in both options shows that option B is much simpler than option A. The Full-Serial 

architecture is implemented using both options. Section 4.1 presents the experimental results and 

comparison of option A and B. 

0

1
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Figure 3.3: Full-Serial, architecture of the comparator using option B 

 

3.2 Full-Parallel Architecture 

Full-Parallel is the second proposed architecture for IP address lookup. It applies a parallel search 

on all the entries of the FIB to perform the LPM algorithm. Figure 3.4 illustrates the Full-Parallel 

architecture divided into three blocks: MB, PEB and NHIB. Let 𝑁 be the number of IP addresses 

in the IPv4 FIB. The MB consists of 𝑁 sorted parallel cells and 𝑁 parallel comparators. Every 

cell contains 46 bits: 32 bits of IP address, 6 bits of prefix and 8 bits of NHI. The cells are sorted 

based on their prefix size in descending order. Therefore, the PEB finds the match with the 

lowest address that determines the output of the LPM algorithm (𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎ). Next, the NHIB 

selects the 8-bit NHI corresponding to the 𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎ. It consists of 8 parallel multiplexers of size 

𝑁: 1 with 𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎas their selector. The 𝑖𝑡ℎ multiplexer receives 𝑖𝑡ℎ bit of the 𝑁 NHIs stored in 

the 𝑁 parallel cells. The output of all 𝑁 parallel multiplexers determine the 𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ  (see Figure 

3.4). 

The Full-Parallel architecture reduces the latency and increases the throughput of the IP address 

lookup by performing a parallel search on all the entries. However, it requires high resource 

utilization in terms of FF consumption, since all the FIB is stored in parallel cells. Section 4.2 

describes the synthesis results of the FPGA implementation of the Full-Parallel architecture. 

0
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Figure 3.4: Full-Parallel architecture 

 

3.3 IP-Split Architecture 

IP-Split is the third proposed ALE architecture. As shown in Figure 3.5, it is divided into three 

main blocks and its MB consists of two sub-blocks: Decoder Block (DB) and Comparator Block 

(CB). In the following sub-sections, the behaviour of DB, CB, PEB and NHIB are explained in 

detail. 

3.3.1 Decoder Block 

To perform a traditional parallel comparison with the 𝑁 entries of the FIB, 𝑁 comparators are 

required (as shown in Figure 3.4, the Full-Parallel architecture). A large FIB may contain several 

IP addresses that are identical in some segments. This would waste resources, since multiple 

equivalent comparisons would be performed. To avoid such repetitive comparisons, the incoming 

IP address is split into 𝑣 segments of 𝑘 bits. Each segment of the incoming IP is expanded to its 

fully decoded form by an individual binary decoder. As shown in Figure 3.5, the DB consists of 𝑣 
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binary decoders of size 𝑘-to-2𝑘. The decoding method facilitates comparisons on an input 

segment by simultaneously providing all possible comparisons results for that segment. Some 

existing approaches on string matching employ a similar decoding method to improve 

comparison efficiency for large sets [19], [21].  

 

Figure 3.5: IP-Split architecture 

 

3.3.2 Comparator Block 

The CB compares the decoded incoming IP address with all IP addresses of the FIB using AND 

operations. Each IP address of the FIB is hard-coded in a single AND operation. If one new entry 

is added to the FIB, the corresponding AND operation must be synthesized and appended to CB. 

Consequently, changing the FIB demands a re-synthesis of CB, while other blocks are fixed. A 

partial reconfiguration only for the CB is favorable for such cases. 

As shown in Figure 3.5, the CB consists of 𝑁 AND operations of different sizes.  The values of 

𝑚1 to 𝑚𝑁 determine the size of the first to 𝑁𝑡ℎ AND operations. Each input port of the AND 

operation is connected to the output port of the decoder for the corresponding segment.  For 

instance, the 𝑖𝑡ℎ output port of the 𝑗𝑡ℎ decoder is connected to one of the input ports of the AND 

operation for an IP address that has the value 𝑖 on its 𝑗𝑡ℎ segment. The number of input ports of 

the 𝑙𝑡ℎ AND operation (𝐼𝑛𝑃𝑜𝑟𝑡𝑠𝑙) depends on the prefix size of the 𝑙𝑡ℎ entry of FIB (𝑝𝑟𝑒𝑓𝑖𝑥𝑙). If 

𝑘 divides 𝑝𝑟𝑒𝑓𝑖𝑥𝑙, the 𝐼𝑛𝑃𝑜𝑟𝑡𝑠𝑙 is equal to 
𝑝𝑟𝑒𝑓𝑖𝑥𝑙

𝑘
 . Otherwise, the number of input ports of the 

𝑙𝑡ℎ AND operation for this case is calculated using the following equation: 

ALE
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𝐼𝑛𝑃𝑜𝑟𝑡𝑠𝑙 = ⌊
𝑝𝑟𝑒𝑓𝑖𝑥𝑙 

𝑘
⌋ + 𝑝𝑟𝑒𝑓𝑖𝑥l 𝑚𝑜𝑑 𝑘, 𝑙 = 0,1, … , 𝑁 − 1,                                 (3.1) 

The first ⌊
𝑝𝑟𝑒𝑓𝑖𝑥𝑙

𝑘
⌋ MSB bits of the IP(31: 32 − 𝑝𝑟𝑒𝑓𝑖𝑥𝑙) are handled by the decoders while the 

𝑝𝑟𝑒𝑓𝑖𝑥𝑙 𝑚𝑜𝑑 𝑘 ending bits will not completely fill the 𝑘 input ports of a decoder. Therefore, they 

are directly connected to the corresponding AND logic. An example of the DB and CB is 

illustrated in Figure 3.6.  

Suppose that the FIB consists of two entries with the following values: 𝐼𝑃1 = ”43.180.0.0”, 

𝐼𝑃2  = ”43.176.0.0”, 𝑃𝑟𝑒𝑓𝑖𝑥1 = 15, 𝑃𝑟𝑒𝑓𝑖𝑥2 = 12.  Let 𝑣 and 𝑘 be 3 and 5, respectively. The 

prefix of each entry determines the portion of each IP address that requires a comparison. 

𝐼𝑃1(31: 17) and 𝐼𝑃2(31: 20) of the first and second entries are compared with the same portion 

of the incoming IP address. The AND operations corresponding to the first and second entries are 

calculated as follows. For the first entry, since 𝑘 divides 𝑃𝑟𝑒𝑓𝑖𝑥1, the corresponding AND 

operation has 
15

5
= 3 inputs. However, the second entry, which has prefix size of 12, requires a 4-

input AND operation. These four inputs are composed of the output ports of the first ⌊
12 

5
⌋ =

2 decoders and the 12 𝑚𝑜𝑑 5 = 2 ending bits of the 𝐼𝑃2(31: 20). 

 

Figure 3.6: Example on AND operations of the comparator block 

 

To perform the LPM algorithm, the AND operations are sorted based on their prefix size in a 

descending order. The result of 𝑙𝑡ℎAND operation is one bit that determines if there is a match of 

, 
, 
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the incoming IP address with the 𝑙𝑡ℎ entry of the FIB or not. The 1-bit outputs of the 𝑁 AND 

operations are sent to the PEB for further processing. 

3.3.3 Priority Encoder Block  

The PEB receives the 𝑁-bit sorted comparison result of CB based on the prefix size. Therefore, 

the match with the lowest address determines the output of the LPM algorithm. The PEB receives 

an 𝑁-bit input and finds the address of the first occurred match i.e. 𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎ. It also determines 

if there was at least one match found in the FIB using an output variable called 𝑣𝑎𝑙𝑖𝑑.  

3.3.4 Next Hop Information Block 

NHIB is the last block of the IP-Split architecture that determines the output of the ALE. NHIB 

uses RAM to store the NHI corresponding to every entry of the FIB. The input 𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎ 

determines the address of the 𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ inside the RAM.   

3.4 IP-Split-Bucket Architecture 

The IP-Split-Bucket is the final proposed ALE architecture that is an upgraded version of the IP-

Split architecture. It is a novel, scalable, high-performance and memory-less architecture for real-

time IP address lookup. The complete IP-Split-Bucket architecture, shown in Figure 3.7, consists 

of six pipeline stages. It is divided into three main blocks while its MB consists of two sub-

blocks: DB and CB. The architecture of DB and NHIB are identical to these in the IP-Split 

architecture. The functionalities of the remaining blocks are described in the sections 3.4.1 and 

3.4.2.  

3.4.1 Comparator Block 

The IP-Split-Bucket architecture employs a partitioning scheme similar to certain existing work 

[11]. Accordingly, the IP-Split-Bucket partitions the FIB into a predefined number of buckets 

using a bucket identifier. A bucket identifier is a predetermined 𝑛-bit portion of the IP address 

(𝐼𝑃(𝐵𝐼𝑠: 𝐵𝐼𝑒)). The 𝐵𝐼𝑠, 𝐵𝐼𝑒 indicate the starting and ending indexes of the bucket identifier, 

respectively. All IP addresses with the same bucket identifier value belong to the same bucket, 

and the total number of buckets is 2𝑛. The distribution of the IP addresses among the buckets 

depends on the FIB and the bucket identifier. An effective bucket identifier should partition the 
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IP addresses uniformly, leading to a balanced distribution with ≅
𝑁

2𝑛
 IP addresses in each bucket. 

As shown in Figure 3.7, the CB consists of 2𝑛 parallel components, called CBucket. Each 

CBucket compares the decoded incoming IP address with the IP addresses of the corresponding 

bucket using several AND operations. The architecture of every CBucket is identical to the 

architecture of the CB in the IP-Split architecture.  

 

Figure 3.7: IP-Split-Bucket architecture 

 

3.4.2 Priority Encoder Block 

The bucket identifier of the incoming IP address (𝐼𝑃𝑖𝑛(𝐵𝐼𝑠: 𝐵𝐼𝑒), in Figure 3.7) defines the 

CBucket that contains useful comparison results. Therefore, a multiplexer is applied that passes 

the outputs of the appropriate CBucket based on the value of 𝐼𝑃𝑖𝑛(𝐵𝐼𝑠: 𝐵𝐼𝑒). The multiplexer has 

𝑚 × 2𝑛  inputs, where  

𝑚 = 𝑀𝐴𝑋(𝑠𝑖𝑧𝑒(𝐶𝐵𝑢𝑐𝑘𝑒𝑡#𝑏)),       𝑏 = 0,1, … , 2𝑛 − 1,                                   (3.2) 

and 𝑠𝑖𝑧𝑒(𝐶𝐵𝑢𝑐𝑘𝑒𝑡#𝑏) is the total number of IP addresses that have been allocated to the 𝑏𝑡ℎ 

bucket. 

Next, a priority encoder receives all the comparison results of the appropriate CBucket. It passes 

the local address (𝐴𝑑𝑑𝑟𝐿𝑜𝑐𝑎𝑙) of the match with longest prefix size in the appropriate CBucket. 

To calculate the location of the match in the FIB, it is required to calculate the global match 

address (𝐴𝑑𝑑𝑟𝐺𝑙𝑜𝑏𝑎𝑙) using the following equation: 
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                       𝐴𝑑𝑑𝑟𝐺𝑙𝑜𝑏𝑎𝑙 = 𝐴𝑑𝑑𝑟𝐿𝑜𝑐𝑎𝑙 + 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝑏,    𝑏 = 0, … , 2𝑛 − 1,                              (3.3)  

where the match occurred in the 𝐶𝐵𝑢𝑐𝑘𝑒𝑡#𝑏. The address calculation in (3.3) corresponds to 

adding the local address of the match found by the priority encoder with the base address of the 

appropriate bucket. Since a fixed-number of entries of the FIB are assigned to each bucket, the 

base address of each bucket is a constant value stored in Base Address Table. The entries of the 

Base Address Table are found with (3.4):  

   𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝑏 = ∑ 𝑠𝑖𝑧𝑒(𝐶𝐵𝑢𝑐𝑘𝑒𝑡#𝑏)𝑏−1
𝑖=0 , 𝑏 = 1,2, … , 2𝑛 − 1,                           (3.4)                                                

where 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝑏 is the base address for the 𝑏𝑡ℎ  bucket, and 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟0 = 0. 

3.5 Update-Enabled IP-Split-Bucket Architecture 

In this section, we enhance the IP-Split-Bucket architecture so that is supports FIB updates. This 

architecture supports all three types of updates, additions (A), modifications (M) and deletions 

(D), by the three parallel modules shown in Figure 3.8. The update module supports A and the 

two modified IP-Split-Bucket modules support D and M. The update module is a small ALE with 

a FIB size of 𝑆 containing all the new additions (A). The value of 𝑆 depends on the update rate 

and the throughput of the system. The update module can be implemented using a TCAM or a 

Trie data structure. The remaining two parallel modules are a modified version of IP-Split-Bucket 

shown in Figure 3.9. The modified IP-Split-Bucket architecture consist of the three blocks MB, 

PEB and NHIB along with an additional block PrefixB. PrefixB stores the prefixes of the FIB in 

a memory. It passes the 𝑃𝑟𝑒𝑓𝑖𝑥𝑀𝑎𝑡𝑐ℎthat is the prefix of the match, to the output. The 

𝑃𝑟𝑒𝑓𝑖𝑥𝑀𝑎𝑡𝑐ℎ is required in the global updatable IP-Split-Bucket to find the global match.  

When an update type of D is requested for an entry, the prefix size and the NHI of the 

corresponding entry are modified in the PrefixB and NHIB, respectively. Delete of an entry from 

the FIB is similar to replacing the prefix and the NHI of the corresponding entry with the prefix 

and the NHI of the previous longest prefix match found in the FIB. For instance, suppose 𝐼𝑃𝑖𝑛  =

 “00101011101101011010111010101” and the FIB has the following two entries: 𝐼𝑃1 =

”00101011101101000000000000000000”, 𝑃𝑟𝑒𝑓𝑖𝑥1 = 15, 𝑁𝐻𝐼1 = 8, 𝐼𝑃2  =

”00101011101100000000000000000000”, 𝑃𝑟𝑒𝑓𝑖𝑥2 = 12, and 𝑁𝐻𝐼2 = 19. Two matches are 

found in the FIB that the first entry determines the LPM output. If a D of 𝐼𝑃1is requested in the 

FIB, the LPM algorithm determines 𝐼𝑃2 as the match with the largest prefix size and returns the 
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NHI of 𝐼𝑃2 After a D of 𝐼𝑃1, the NHIB replaces the  𝑁𝐻𝐼1 by the 𝑁𝐻𝐼2 to return correct 

𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ. Moreover, the PrefixB replaces 𝑃𝑟𝑒𝑓𝑖𝑥1 by 𝑃𝑟𝑒𝑓𝑖𝑥2 to return correct 𝑃𝑟𝑒𝑓𝑖𝑥𝑀𝑎𝑡𝑐ℎ. 

This change of entries in NHIB and PrefixB is similar to a deletion of the first entry. 

When an update type of M is requested for an entry, only the NHI of the corresponding entry is 

modified in the NHIB. A modification requires only change of the corresponding NHI.   

For a new FIB, all the data set dependent blocks require a re-synthesis, which is all blocks except 

the PEB. However, an update does not require a re-synthesis and can be handled at its request 

time. Two modified IP-Split-Bucket modules are applied to keep the system active during re-

implementation and maintain the high throughput of the architecture, where one is active at a 

time. The update module determines the active modified IP-Split-Bucket architecture. When its 

FIB size reaches its maximum value (𝑆), a new sorted FIB is created containing all the recent 

updates (D, M and A). To perform an IP address lookup as shown in Figure 3.8, the incoming IP 

address is sent to the update module and the active modified IP-Split-Bucket module in parallel. 

IP address lookup is performed on both modules in parallel. Next, the arbiter module determines 

the 𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ of the whole system. The arbiter module selects the 𝑁𝐻𝐼𝑖as the 𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ, when 

𝑃𝑟𝑒𝑓𝑖𝑥𝑖 is larger than 𝑃𝑟𝑒𝑓𝑖𝑥𝑗 .  
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Figure 3.8: Update-enabled IP-Split-Bucket architecture 

 

Figure 3.9: Modified IP-Split-Bucket architecture 
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CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION 

This chapter presents the experimental results of the four proposed ALE architectures.  The 

proposed architectures are evaluated in terms of hardware complexity and performance. Section 

4.1 describes the synthesis results of hardware implementation of the Full-Serial architecture on 

FPGA. Section 4.2 provides the synthesis results of the Full-Parallel architecture on FPGA. 

Sections 4.3 and 4.4 present the detailed synthesis results of the IP-Split and the IP-Split-Bucket 

architectures on FPGA, respectively. 

4.1 Full-Serial Architecture 

The Full-Serial architecture was implemented for various sizes of real-world FIB extracted from 

Routing Information Services (RIS) raw data [8].  It was synthesized on a Virtex-5 XC5VLX50T 

FPGA using Xilinx ISE 13.4 synthesis tool. The Full-Serial architecture was implemented using 

two options: A and B. Figure 4.1 and Figure 4.2 illustrate the hardware consumption of both 

options in terms of LUTs and FFs, respectively. Option B has simpler architecture for its 

comparator than option A (see sub-sections 3.1.1 and 3.1.2). Therefore, it requires lower 

hardware consumption in terms of LUTs and FFs.  Figure 4.3 shows a comparison of the clock 

period of this architecture using options A and B. Option B achieves better performance than 

option A.  

In this architecture, all FIB is stored in on-chip Block RAM. Therefore, the determinative part of 

the resource consumption is the memory usage rather than the logical resource usage (LUTs and 

FFs). Consequently, the size of BRAMs in an FPGA will determine the maximum FIB size that 

can be supported by the Full-Serial architecture. Table 4.1 shows an estimation of the maximum 

size of FIB supported by various FPGAs using option A and option B. The last column of Table 

4.1 shows the cost of each FPGA. 

4.2 Full-Parallel Architecture 

The Full-Parallel architecture was implemented on a Virtex-5 XC5VLX50T FPGA for a real-

world FIB extracted from RIS raw data [8]. Table 4.2 illustrates the synthesis results of the Full-

Parallel architecture for different FIB sizes up to 4 k using the Xilinx ISE 13.4 synthesis tool. The 
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results show that the number of LUTs and FFs increases linearly with the size of the FIB, 

whereas the clock period shows a sub-linear increase. 

 

Figure 4.1: Comparison of option A and option B in terms LUTs utilization 

 

Figure 4.2: Comparison of option A and option B in terms FFs utilization 
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Figure 4.3: Comparison of option A and option B in terms of clock period 
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In the Full-Parallel architecture, all FIB entries (known as 𝑐𝑒𝑙𝑙𝑠 in section 3.2) are stored in the 

logical resources of the FPGA. Moreover, there are 𝑁 parallel comparators in the MB 

implemented in logical resources. Therefore, the number of LUTs in an FPGA determines the 

maximum supported size of the FIB for the Full-Parallel architecture.  

Table 4.3 lists the largest Xilinx FPGAs of different families with their number of available 

LUTs and their price. In this table, an estimation on the maximum supported size of the FIB is 

provided for each FPGA. 

4.3 IP-Split Architecture 

The complexity of the IP-Split architecture is dependent on the predefined values of its design 

parameters shown in Figure 3.5: 𝑣, 𝑘, (𝑚1: 𝑚𝑁), 𝑁. Therefore, it is required to find optimal 

values for the design parameters. The value of (𝑚1: 𝑚𝑁) and 𝑁 is dependent on the FIB, which is 

data set dependent. The value of (𝑣, 𝑘) in the DB have an impact on the complexity of the CB. 

Apart from (𝑣, 𝑘) values, the prefix distribution of the FIB determines the size of the AND 

operations in the CB. Since the objective is to find the most efficient design parameter values for 

the IP-Split architecture, we conducted a design space exploration for (𝑣, 𝑘) to estimate the 

complexity of the CB for an existing FIB. Figure 4.4 illustrates the prefix distribution of an 

existing IPv4 FIB extracted from RIS raw data that corresponds to the normal prefix distribution 

of the existing FIBs [8].  

Table 4.2: Full-Parallel synthesis results for different sizes of FIB on Virtex-5 

N LUTs FFs Clock Period LUTs/N 

31 0.29 k 0.10 k 2.7 9.2 

128 1 k 0.19 k 2.8 9.1 

1 k 8 k 1 k 2.8 8.3 

2 k 16 k 2 k 2.9 8.0 

4 k 34 k 4 k 2.9 8.3 
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Table 4.3: Maximum FIB size supported for Full-Parallel with FPGAs 

FPGA LUTs Max N Supported Unit Price ($CAD) 

Virtex 5 : XC5VLX50T 28 k 3 k 0.75 k 

Virtex 5 : XC5VLX330T 207 k 23 k 18 k 

Kintex 7 : XC7K480T 298 k 33 k 4 k 

Kintex UltraScale : KU115 663 k 73 k unavailable 

Virtex 7 : XC7VX1140T 712 k 79 k 23 k 

Virtex 7 : XC7V2000T 1 M 135 k 25 k 

Virtex UltraScale : VU440 2 M 281 k unavailable 

 

 

Figure 4.4: Prefix distribution of a real-world IPv4 FIB [8] 
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consumed LUTs for all IP addresses with that specific prefix size. The calculation of the values 

stored in the fifth row of Table 4.4 is described below: 

 The prefix size is equal to 19. 

 The repetition is the number of IP addresses with prefix size equal to 19. It is equal to 27033 

as shown in Figure 4.4. 

  The size of AND operation for an IP address with prefix size of 19 is equal to (⌊
19 

7
⌋ +

19 mod 7 = 7) according to Equation 3.1. 

 The number of consumed LUTs is equal to (27033 × 2 =  54066), since every AND 

operation of 7-bits requires two 6-input LUTs.    

The total number of consumed LUTs for design parameters 𝑘 =  7 and 𝑣 =  4 is equal to the 

summation of the last column of Table 4.4. 

We conducted a design space exploration on the decoder size by applying the 2-step estimation 

process. We proposed 32 test cases that estimate the LUT consumption of the CB for different 

size of decoders as shown in Figure 4.5. For every test case, the size of decoders (𝑘) is 

incremented by one and the value of v for is equal to ⌊
32 

𝑘
⌋. The estimation results illustrate that 

the optimal values for (𝑣, 𝑘) among the test cases are (3, 10) that lead to the lowest LUT 

consumption.  

As shown in Figure 4.4, most of the IP addresses in a FIB have prefix size of 24. For such prefix 

size, when (𝑣, 𝑘) is (3, 10), we require a 6-input AND operation (⌊
24 

10
⌋ + 24mod10 = 6). 

However, we require a 3-input AND operation (⌊
24 

8
⌋ = 3) for (4, 8). Therefore, the choice (4, 8) 

results in a simpler AND operation compared to (3, 10). Moreover, the estimation results shown 

in Figure 4.5 does not show a significant difference in their LUT consumption. Therefore, we 

have applied four decoders of 8-to-28 in all our experiments. 

The IP-Split architecture was synthesized on a Virtex-5 xcvlc50t FPGA with Synplify 15.09 

synthesis tool for various sizes of real-world FIBs extracted from the RIS raw data [8]. The 

hardware description of the IP-Split architecture is more complex compared to the previous ones, 

and thus, the Synplify tool is used instead of Xilinx in this section to save the synthesis time for 
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large FIB size. To evaluate the complexity of every block in terms of resource usage and 

performance, the synthesis results of every block is presented in following sections. 

 

Table 4.4: Estimation of the number of used LUTs while applying 4 of 7-to-27 decoders 

Prefix Size Repetition Size of AND operation LUTs 

15 1792 3 1792 

16 13080 4 13080 

17 7817 5 7817 

18 13110 6 13110 

19 27033 7 54066 

20 38278 8 76556 

21 41172 3 41172 

22 63423 4 63423 

23 55974 5 55974 

24 313482 6 313482 

25 1428 7 2856 

26 1221 8 2442 

27 765 9 1530 

28 199 4 199 

29 268 5 268 

30 295 6 295 

31 29 7 58 

32 527 8 1054 
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Figure 4.5: Design space exploration for the size of decoders 

 

4.3.1 Synthesis Results of the Decoder Block 

This section presents the synthesis results of the DB. The DB consists of four 8-to-256 decoders. 

Table 4.5 illustrates the hardware complexity of the DB in terms of LUT and FF consumption. 

The last column of Table 4.5 shows that this block supports a clock frequency of 1191 MHz. 

Since the complexity of the DB is not dependent on the FIB size, 𝑁 is not a metric in the 

presented results. Therefore, the IP-Split architecture requires a small, fixed-size DB regardless 

of the FIB size.  

Table 4.5: Synthesis results of the DB 

DB LUTs FFs Clock Period (ns) 

4 Decoders of 8-to-256 1044 1024 0.839 
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4.3.2 Synthesis Results of the Comparator Block 

This section presents the synthesis results of the CB for different FIB sizes. Figure 4.6 shows the 

number of consumed LUTs and FFs of this architecture. Based on the theoretical analysis of the 

CB growth, it is estimated that a FIB with around 500 k entries requires 652 k FFs and 586 k 

LUTs in its CB. Figure 4.7 illustrates the clock period of the DB that has a near-linear increase 

with the size of the FIB. 

 

Figure 4.6: Hardware resource usage of the comparator block 

 

 

Figure 4.7: Clock period of the comparator block 
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4.3.3 Synthesis Results of Priority Encoder Block  

This section presents the synthesis results of the PEB for various FIB sizes. The priority encoder 

has 𝑁 inputs where 𝑁 is equal to the number of FIB entries. Therefore, the size of the PEB 

increases linearly with the size of the FIB. Figure 4.8 illustrates the synthesis results of the PEB 

in terms of LUT and FF consumption. Based on the theoretical analysis of the PEB growth, the 

PEB consumes 582 k FFs and 1 M LUTs for a FIB size around 500 k. Figure 4.9 shows the clock 

period of the PEB for different FIB sizes. PEB is the bottleneck of IP-Split architecture in terms 

of clock period. According to the synthesis results, it is necessary to minimize the size of the PEB 

for large FIBs, which is the main goal of the IP-Split-Bucket architecture. 

 

Figure 4.8: Hardware resource usage of the priority encoder block 

 

Figure 4.9: Clock period of the priority encoder block 
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4.3.4 Synthesis Results of the NHIB 

The NHIB is implemented in a BRAM of size 𝑁 × 8 bits containing 8-bit output ports. 

Therefore, a FIB with around 500 k entries requires an FPGA with ability to support 4 Mb block 

RAMs. The NHIB consumes neither LUTs nor FFs. 

4.3.5 Discussion 

The IP-Split architecture provides some improvements compared to previously proposed 

architectures. It proposes deterministic latency with high performance, which is supported by the 

Full-Serial architecture. Furthermore, the IP-Split architecture avoids repetitive redundant 

comparisons handled in the Full-Serial and the Full-Parallel architectures. However, some 

drawbacks still exist in the IP-Split architecture in the matter of area consumption for large FIBs. 

It is required to minimize the resource usage of the IP-Split architecture to be able to fit the whole 

architecture inside the existing FPGA. Therefore, it is required to minimize the size of each 

block:  

1. The DB requires no modification or change, since it is static for every FIB size and has 

negligible resource usage compared to the other blocks.  

2. The CB is a large block containing simple AND operations that its size is dependent on the 

FIB size. 

3. The PEB is the bottleneck of the design for large FIBs. Finding the match with largest prefix 

size among 𝑁 inputs is the main challenge of the IP-Split architecture. For instance, to 

support a FIB with 500 k entries, it is required to synthesize a priority encoder with 500 k 

inputs. 

We need to minimize the LUTs and FFs usage of each block to be able to fit the whole design 

inside an existing FPGA. The PEB is the main challenging block among all the blocks. It is the 

bottleneck of the design in terms of clock period. Therefore, to respect the network constraints in 

terms of throughput we need to minimize the clock period of the PEB. For that matter, the IP-

Split-Bucket architecture is proposed. It minimizes the size of the problem by dividing the whole 

FIB into buckets based on the value of the certain portion of the IP addresses. Accordingly, the 

CB consists of several buckets where only one bucket contains the viable match result at a time 
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for each incoming IP address. Therefore, the size of the PEB will decrease from the whole FIB 

size to the size of the maximum bucket.  

4.4 IP-Split-Bucket Architecture 

In this section, we used a different FPGA for all IP-Split-Bucket experiments compared to the 

previously proposed architectures. A Virtex-7 FPGA was employed, due to its higher 

performance and larger capacity compared to the Virtex-5 family. For large 𝑁 FIBs implemented 

on the IP-Split-Bucket architecture, the Synplify optimization tool leads to an internal error. The 

largest FIB size supported with the Synplify synthesis tool was 16 k for the IP-Split-Bucket 

architecture. Therefore, we used the Xilinx ISE synthesis tool for the IP-Split-Bucket 

experiments. The target IPv4 FIB used for all experiments was extracted from RIS raw data [8]. 

Four set of experiments were performed for the IP-Split-Bucket architecture. In the first set of 

experiments described in section 4.4.1, the 6-level pipelined architecture of IP-Split-Bucket was 

implemented for different FIB sizes. In the second set of experiments presented in section 4.4.2, 

the IP-Split-Bucket architecture is compared with some existing trie-based and CAM-emulation 

approaches. In the two remaining set of experiments, the objective is to find an efficient set of 

values for the design parameters (𝐵𝐼𝑠, 𝑛, 𝑣, and 𝑘) of the IP-Split-Bucket architecture, since their 

values affect its complexity. In the third set of experiments described in section 4.3.3, efficient 

values for 𝐵𝐼𝑠 and 𝑛 are selected by evaluating the resource utilization of the design for various 

values of 𝑁, 𝐵𝐼𝑠 and 𝑛. In the fourth set of experiments presented in section 4.4.4, a decoder 

generator is proposed to find efficient values the remaining design parameters. Therefore, it 

determines a series of decoders in the DB using the values selected in section 4.4.3 for  𝐵𝐼𝑠 and 𝑛.  

4.4.1 Synthesis Results of the IP-Split-Bucket Architecture 

In the first set of experiments, the hardware area and the performance achieved with the IP-Split-

Bucket architecture were evaluated using different IPv4 FIB sizes (𝑁). In order to achieve a 

uniform distribution of IP addresses in the buckets, the bucket identifier was chosen based on the 

approach proposed by Zheng et al. [11]. In this experiment, we chose 𝑛 = 8 that partitions the 

FIB into 256 buckets. Using Zheng’s approach for 256 buckets, bits 9 to 16 were found to be the 

most appropriate bucket identifier (𝐵𝐼𝑠 =  9 and  𝐵𝐼𝑒 = 16). Figure 4.10 shows the distribution 

of IP addresses when Zheng’s approach is applied for 256 buckets (𝑛 =  8) on a FIB size of 
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581851 extracted from RIS raw data [8]. In Figure 4.10, the x-axis determines the ID group 

number of each bucket and the y-axis determines the number of IP addresses stored in the 

corresponding bucket. 

 

Figure 4.10: IP address distribution into 256 buckets (BIs = 9, 𝐵𝐼𝑒=16) 

 

The remaining design parameters have the following values: 𝑤 =  32, 𝑘 =  8 and 𝑣 =  4. Since 
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decoder in DB is redundant and can be removed from the design. Indeed, the target IP addresses 

are distributed among the buckets based on the bucket identifier, i.e., the second chosen segment 

in this case. Hence, the comparisons of the second segment (bits 9 to 16) are implicitly performed 

by the described partitioning scheme.  

The hardware area consumption of the IP-Split-Bucket architecture depends on the target FIB 
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FFs for various FIB sizes. The number of consumed LUTs increases almost linearly with the 

problem size, whereas the number of consumed FFs shows a sub-linear increase. The proposed 

architecture was evaluated using a target FIB of up to 524 k entries. The results show that 

implementing the largest FIB on a XC7V2200T FPGA consumes 23% and 22% of the available 
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one result every clock cycle, the frequency column, shown in Table 4.6, can be considered as the 

throughput of the architecture. 

Table 4.6: Synthesis results of IP-Split-Bucket architecture for different FIB sizes on Virtex-7 

N m 
Frequency 

(MHz) 

Number of 

LUTs 

Number of 

FFs 

Latency 

(ns) 

4 k 40 246 6.6 k 5 k 24.3 

8 k 59 245 12 k 9 k 24.4 

16 k 115 189 23.7 k 18 k 31.6 

18 k 126 184 25.9 k 19.7 k 32.5 

20 k 143 181 28.6 k 21.7 k 33.0 

32.7 k 220 159 46.8 k 35 k 37.6 

65.5 k 427 136 93 k 69 k 43.8 

90 k 591 120 102 k 69.8 k 49.7 

131 k 846 119 115.9 k 70 k 50.1 

524 k 3316 103 282.3 k 549.7 k 57.9 

 

4.4.2 Comparison of IP-Split-Bucket Architecture and Existing Work 

This section compares some existing trie-based and CAM-emulation approaches with the IP-

Split-Bucket architecture. Table 4.7 demonstrates the FPGA synthesis results of various designs 

using CAM-emulation and trie-based techniques. 

We compare the IP-Split-Bucket architecture with two existing memory-less CAM-emulation 

approaches [21], [29]. Xilinx developed an FPGA-based TCAM core that can be configured to 

use either SRLs or RAMs [29]. Since IP-Split-Bucket avoids using memory resources, we 

compared it with the 32-bit wide SRL-based TCAM core as shown in the sixth column of Table 

4.7. The IP-Split-Bucket architecture was evaluated by implementing test cases of comparable 

sizes on XC5VLX220 FPGAs. The results show that, for a FIB with 1024 IP prefixes, the 

proposed architecture consumes 83.4% fewer LUTs and offers 3.5× higher throughput compared 

to the Xilinx TCAM core [29]. Clark and Schimmel [21] evaluated their design using the largest 
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test cases among BCAM-emulation works. Therefore, we implemented a comparable table size 

of 18 k on the IP-Split-Bucket. Table 4.7 shows that the IP-Split-Bucket consumes 39% and 64% 

fewer LUTs and FFs, respectively.  

Three Trie-based approaches are included in Table 4.7 [15], [16], [17]. Matoušek’s [16] paper 

presented the work that is most recent and most comparable work to ours. We implemented an 

equivalent table size of 442.7 k on XC6VSX475T FPGA, using different tested FIBs. The results 

show that while the IP-Split-Bucket architecture does not use memory resources, Matoušek’s 

approach consumes 7.7 Mb of internal memory. On the other hand, Matoušek’s approach 

requires 85% and 90.5% fewer LUTs and FFs. The IP-Split-Bucket architecture achieves 90.8% 

lower latency compared to Matoušek et al [16] while having 54% lower throughput. Yang et al. 

[15] presented a memory-based Trie-based approach that supports a very large FIB (9.5 M 

entries). Although, Yang et al.’s approach [15] achieves better performance, it consumes a large 

amount of internal and external memories. Yang et al. have not reported the size of the utilized 

external memories, whereas the IP-Split-Bucket architecture avoids using any memory resources 

(~0 Kb). 

4.4.3 The Size and the Starting Bit Selection for the Bucket Identifier 

Two methods are proposed to find efficient values for 𝐵𝐼𝑠 and 𝑛 for a FIB size of 𝑁 to minimize 

the complexity of the IP-Split-Bucket architecture. In the first method, we estimate the IP-Split-

Bucket complexity for various values of 𝑛 and 𝑁 and fixed size for 𝐵𝐼𝑠. In the second method, an 

estimation function is proposed that finds efficient values of 𝐵𝐼𝑠, 𝑛 for a fixed size of 𝑁.  

In the first method, the resource utilization was characterized for different values of 𝑛 using a 

fixed value of 𝐵𝐼𝑠. To improve efficiency, all buckets should contain approximately the same 

number of entries of the FIB. Therefore, it is required to choose a fixed value of 𝐵𝐼𝑠  for this 

method that leads to equalizing the bucket sizes. In order to achieve a uniform distribution of IP 

addresses in the buckets, the bucket identifier was chosen based on the approach proposed by 

Zheng et al. [11]. In [11], consecutive bits of 10 to 13 are chosen for the bucket identifier that 

leads to a normal distribution of IP addresses into 16 groups. The authors tested this bucket 

identifier for multiple real-world FIBs that leads to a uniform group division. Therefore, using 

Zheng’s approach, we apply the fixed value of  𝐵𝐼𝑠 = 10. 
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Table 4.7: Detailed comparison of existing work with IP-Split-Bucket 

       Metrics 

 

Approaches 

Device 

# of 

Patterns 

× # of 

char 

LUTs FFs 
Memory 

(Kb) 

Frequency 

(MHz) 

Throughput 

(MLPS) 

Latency 

(ns) 
Technique 

[17] 

2006 

Virtex-2 

XCVP100 

602 

× 20.4 
6 k 6 k ~ 0 216 216 37 Trie-based 

[15] 

2011 

Virtex-6 

SX475T 

9.5 M 

× 32 
7 k 22 k 

28,044 

(BRAM) 

+ 4 

External 

SRAMs 

156 312 13 Trie-based 

[16] 

2013 

Virtex-6 

XC6VSX475T 

442,748 × 

32 
88 k 44 k 7780 127 254 472 Trie-based 

[21] 

2004 
Virtex2-8000 

17,537× 

32 
55 k 55 k ~ 0 219 233 146 

BCAM-

emulation 

[29] 

TCAM core 

Virtex-5 

XC5VLX220 

1024 

× 32 
13 k 63 ~ 0 80 80 12 

TCAM-

emulation 

IP-Split-

Bucket 

Virtex-6 

XC6VSX475T 

442,747 × 

32 
593 k 464 k ~ 0 116 116 43 

TCAM-

emulation 

Virtex-5 

XC5VLX220 
1024 × 32 2.2 k 1.9 k ~ 0 362 362 13.5 

Virtex-7 

XC7V2000T 

1024 × 32 2.3 k 1.9 k ~ 0 415 415 12 

18,001 × 

32 
22 k 19 k ~ 0 184 184 27 

524,287 × 

32 
282 k 550 k ~ 0 103 103 48 

 

There are nine test cases with different values of 𝑛 changing in the range of 2 to 10. Changing the 

value of 𝑛 does not significantly affect the hardware complexity of the DB, CB and NHIB blocks. 

The PEB is the main block that varies by changing 𝑛. The PEB consists of a multiplexer, a 

priority encoder and an adder. The adder combines two values of length 𝑙𝑜𝑔2𝑚 bits. Since 

increasing 𝑛 leads to a negligible growth of 𝑚, ignoring variations in resource utilization of the 

adder in the final estimation does not significantly change the result. Hence, the hardware 

complexity is estimated by summing up the LUT usage of the multiplexer and the priority 
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encoder for each tested value of 𝑛. The complexity of the multiplexer is also dependent on the 

value 𝑚, while the complexity of the priority encoder is only dependent on 𝑚. Therefore, we 

evaluate the maximum bucket size (𝑚) for every test case and FIB size, shown in Table 4.8. 

Figure 4.11.a and Figure 4.11.b show the LUT consumption of the multiplexer and priority 

encoder for the nine test cases, respectively. According to Figure 4.11.a, the multiplexer has a 

near-linear increase in the LUT usage as 𝑛 increases. For a given number of table entries 𝑁, 

increasing the number of buckets 2𝑛 means that the buckets will be smaller, hence smaller 𝑚. 

Since the priority encoder size only depends on the value of 𝑚, a smaller 𝑚 leads to a smaller 

priority encoder. Figure 4.11.b shows that when 𝑛 increases, the resource utilization of the 

priority encoder is reduced. Figure 4.12 compares the final hardware complexity for different 

values of 𝑛 and 𝑁 for the multiplexer and the priority encoder. These results show that changing 

the number of buckets from 16 (𝑛 = 4) to 128 (𝑛 = 7) has a limited impact on the overall LUT 

consumption. Among the test cases, the optimal choice for the bucket identifier size is 𝑛 =  5, 

which minimizes resource utilization for almost all FIB sizes. 

Table 4.8: Maximum bucket size (𝑚) for variable test cases with variable FIB sizes 

FIB Sizes 

Case 

#1 

Case 

#2 

Case 

#3 

Case 

#4 

Case 

#5 

Case 

#6 

Case 

#7 

Case 

#8 

Case 

#9 

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

N = 65536 17429 8741 4558 2504 1325 703 427 225 149 

N = 32768 8729 4404 2282 1273 679 358 220 120 79 

N = 18001 4748 2402 1281 705 379 199 126 69 45 

N = 16384 4304 2178 1157 639 348 183 115 63 43 

N = 8192 2123 1085 573 316 166 96 59 34 26 

N = 4096 1083 544 306 165 97 53 40 19 15 

 

In the second method, we vary the position of the bucket identifier starting index (𝐵𝐼𝑠) and for 

each one, we measure the complexity for various values of 𝑛. The CB and PEB blocks are the 

main parts of the architecture that vary when changing 𝐵𝐼𝑠 and 𝑛. Hence, the resource utilization 
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is estimated by summing up the LUT consumption of the CB and PEB blocks for each tested 

value of 𝐵𝐼𝑠 and 𝑛 using a moderate size FIB (16 k).   

We propose two steps of estimation for the CB and PEB. The first step estimates the complexity 

of the CB. The CB consists of 𝑁 + 𝐸 number of AND operations, where 𝑁 is the FIB size and 𝐸 

is number of expansions in the FIB. Every IP address with a prefix size (𝑝𝑟𝑒𝑓𝑖𝑥) smaller than the 

ending index of a bucket identifier (𝐵𝐼𝑒) is expanded into 𝐸 IP addresses with prefix size of 𝐵𝐼𝑒. 

The number of expansions (𝐸) is calculated by 2𝐵𝐼𝑒− 𝑝𝑟𝑒𝑓𝑖𝑥. For instance, suppose 𝐵𝐼𝑠 = 10, 

𝐵𝐼𝑒 = 15, 𝐼𝑃1 = ”234.84.212.153” and 𝑝𝑟𝑒𝑓𝑖𝑥1 = 13. In such case, 𝐼𝑃1 requires an expansion 

into 215− 13=4 IP addresses with prefix size of 15. According to the example, it is stated that the 

value of the 𝐵𝐼𝑒 determines 𝐸 in a FIB. Since 𝐵𝐼𝑒 is equal to 𝐵𝐼𝑠 + 𝑛 − 1, a prefix_expansion 

function is proposed that determines the value of 𝐸 required for a FIB using the values of 𝐵𝐼𝑠 

and 𝑛. Therefore, the complexity of the CB is estimated by adding the value of 𝐸 and 𝑁. The 

second step estimates the complexity of the PEB that consists of an 𝑚 × 2𝑛multiplexer and an 

𝑚–input priority encoder. The value of 𝑚 is determined after an expansion and bucket division of 

the FIB for specific 𝐵𝐼𝑠 and 𝑛. Therefore, the summation of the LUT consumption of the 

multiplexer and priority encoder determines the complexity of the PEB. 

The estimation function sweeps the value of 𝐵𝐼𝑠 and 𝑛 in the ranges of (1:23) and (2:11), 

respectively and estimates the total LUT consumption of the PEB and CB. Next, the design 

parameters with the lowest value of total LUT consumption are selected as the optimal values. 

Figure 4.13 shows the design space exploration on 𝐵𝐼𝑠 and 𝑛 for the moderate FIB size of 16383. 

The optimal value (𝑚𝑖𝑛𝐶𝑜𝑠𝑡) occurs for a 𝐵𝐼𝑠 = 9 and 𝑛 = 7. 

Figure 4.14 is a zoomed-in section of Figure 4.13. In the reported synthesis results of the IP-

Split-Bucket architecture in section 4.4.1, we applied the values of 9 and 8 for 𝐵𝐼𝑠  and 𝑛, 

respectively. Figure 4.14 demonstrates there is not a significant difference in the total estimated 

LUT consumption for a design with 𝐵𝐼𝑠 = 9 and 𝑛 = 8 compared to the optimal point of 𝐵𝐼𝑠 = 9 

and 𝑛 = 7.  
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Figure 4.11: LUT consumption of multiplexer (a) and priority encoder (b) of the PEB 

 

Figure 4.12: PEB resource utilization estimation as a function of 𝑛 and 𝑚 
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Figure 4.13: A design space exploration on 𝐵𝐼𝑠 and 𝑛 

 

Figure 4.14: A zoomed-in section of the design space exploration on 𝐵𝐼𝑠 and 𝑛 
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4.4.4 Decoders Selection 

Using the optimal values of 𝐵𝐼𝑠 and 𝑛 obtained in section 4.4.3, we searched for a series of 

decoders for the IP-Split-Bucket architecture that lead to the lowest total LUT consumption. A 

random decoder generator is proposed that generates an array (𝑑𝑒𝑐) containing a random number 

of decoders with random sizes. In the random decoder generator, it is assumed that the 

summation of the decoder sizes (𝑆𝑈𝑀(𝑑𝑒𝑐)) and the bucket identifier size (𝑛) should be equal 

to the size of the IPv4 address (32). An array (𝑟𝑎𝑛𝑑) with 16 entries and for which each entry has 

a random value between 2 to 10 is generated. The first 𝑑 entries of the generated array construct 

the 𝑑𝑒𝑐, where the summation of the 𝑑 entries (𝑆𝑈𝑀(𝑟𝑎𝑛𝑑(1: 𝑑))) is equal to 32 − 𝑛.  If the 

summation of the first 𝑑 entries is more than 32 − 𝑛, 𝑑 − 1 first entries and a value of 32 − 𝑛 −

(𝑆𝑈𝑀(𝑟𝑎𝑛𝑑(1: 𝑑 − 1))) will generate the 𝑑𝑒𝑐. Next, an evaluation function is proposed that 

calculates the total LUT consumption of the IP-Split-Bucket architecture with the following 

design parameters: 𝐵𝐼𝑠, 𝑛 and 𝑑𝑒𝑐. The evaluation function determines its design parameters by 

the result of the estimation function (𝐵𝐼𝑠, 𝑛) and the random decoder generator (𝑑𝑒𝑐). Later, this 

function is called iteratively and an efficient 𝑑𝑒𝑐 is selected among the iterations that leads to the 

lowest total LUT consumption. Figure 4.15 illustrates the results given by the evaluation function 

for 3000 iterations. Each point, in this figure, demonstrates the estimated LUT consumption of 

the best solution found in the corresponding number of random tests. After 3000 iterations, the 

most efficient design parameters found by the evaluation function for 𝑁 = 16383 are: 𝐵𝐼𝑠 = 9 , 

𝑛 = 7 and 𝑑𝑒𝑐 = [5 4 4 4 3 2 3]. For this design, the evaluation function estimates the LUT 

consumption of 22.5 k where 𝐸 = 323 and 𝑚 = 197. 
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Figure 4.15: Evaluation function results for 3000 iterations 

  

0 500 1000 1500 2000 2500 3000
5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
x 10

4

# of Random Test Cases

T
o
ta

l 
E

s
ti
m

a
te

d
 L

U
T

 C
o
n
s
u
m

p
ti
o
n



62 

 

 

CHAPTER 5 CONCLUSION AND FUTURE WORK 

Due to ever-increasing number of IP addresses in existing FIBs, there is a high demand for fast, 

high performance ALEs supporting large FIBs. In this thesis, four ALE architectures were 

proposed and implemented in FPGA: The Full-Serial, the Full-Parallel, the IP-Split, the IP-Split-

Bucket and a fifth on the Update-enabled IP-Split-Bucket was proposed. The drawbacks of every 

proposed architecture are avoided in the subsequent one. 

The Full-Serial architecture performs a serial search on the FIB entries stored in the memory 

using one comparator. The comparator is implemented using two different architectures: option A 

and option B. The lookup time is proportional to 𝑁 2⁄  in the Full-Serial architecture. The Full-

Serial architecture has some drawbacks in terms of memory consumption for large FIBs. 

Moreover, it is a slow architecture for which the lookup time is data set dependent. 

These drawbacks are avoided in the second proposed architecture. The Full-Parallel architecture 

performs a parallel search on the FIB entries using multiple parallel comparators instead of one 

comparator. It has a constant latency and throughput for any FIB regardless of the incoming IP 

address. Since all FIB entries are stored into the logical resources of the FPGA, it has a high 

complexity in terms of LUT and FF consumption.  In a large FIB with thousands of IP addresses, 

a parallel comparison on the FIB may contain several redundant comparisons on equivalent 

entries. This issue is resolved in the next proposed architecture. 

The IP-Split architecture employs an additional block of decoders to prevent equivalent repetitive 

comparisons. The main shortcoming of this architecture is the PEB size that is dependent on the 

FIB size. For large FIBs, it requires a large priority encoder, which is the bottleneck of this 

architecture. 

The IP-Split-Bucket architecture is a modified version of the IP-Split architecture. This 

architecture reduces the priority encoder size by dividing the FIB into buckets, where only one 

bucket contains viable comparison results at a time. Therefore, the priority encoder size is 

reduced from the FIB size to the size of the largest existing bucket. The incoming IP address 

specifies the corresponding bucket. IP-Split-Bucket is a memory-less high performance 

architecture supporting large FIBs.  
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The Update-enabled IP-Split-Bucket architecture is the last architecture proposed to improve the 

applicability of the IP-Split-Bucket architecture for high-update-rate IP address lookup. This 

architecture employs a modified version of the IP-Split-Bucket architecture with a parallel update 

system to support all types of updates. 

The proposed architectures were synthesized for various sizes of real-world FIBs taken from the 

RIS raw data set [30].  They were implemented on Virtex-7 and Virtex-5 families of FPGAs 

using Xilinx and Synplify synthesis tools. The Full-Serial architecture was implemented on a 

Virtex-5 XC5VLX50T FPGA using Xilinx ISE 13.4 synthesis tool for FIBs up to 46 k entries. 

This architecture was implemented using two proposed options for the comparator architecture: 

A and B. The Full-Parallel architecture was implemented on a Virtex-5 XC5VLX50T FPGA 

using Xilinx ISE 13.4 synthesis tool for FIBs up to 4 k entries. Since this architecture employs 

one comparator for each entry of the FIB, the logical resources of the existing FPGAs determine 

the maximum supported FIB size.  

The IP-Split architecture consists of four blocks of DB, CB, PEB and NHIB. All the blocks of IP-

Split architecture were synthesized for a Virtex-5 XC5VLX50T FPGA with 15.9 Synplify 

synthesis tool. The synthesis results evaluations illustrate that the PEB is the bottleneck of the IP-

Split architecture. The IP-Split-Bucket architecture was implemented on a Virtex-7 FPGA using 

the Xilinx ISE 13.4 synthesis tool. The results show that implementing a table of 524 k entries on 

a XC7V2200T FPGA consumes 23% and 22% of the available LUTs and FFs, respectively. The 

IP-Split-Bucket architecture has some design parameters that determine its complexity. 

Therefore, a design exploration was performed to choose efficient values for each block 

parameters. 

The fourth proposed architecture, the IP-Split-Bucket architecture, avoids the shortcomings of the 

previously proposed ones. It is a generic scalable memory-less high performance architecture. Its 

main feature is the ability to handle large FIBs (524 k entries) while being memory-less. 

Additionally, the proposed architecture does not face the limitations of trie-based techniques, 

including nondeterministic latency and external memory access. Moreover, as the FIB is 

hardcoded in the logical resources of the FPGA, the IP-Split-Bucket architecture does not require 

TCAMs or other internal or external memory as opposed to existing TCAM-based and TCAM-

emulation approaches. In addition to high-performance, post-fabrication flexibility and scalability 



64 

 

 

are other crucial factors for emerging technologies such as Software Defined Networking (SDN). 

Fast and low-cost realization of new communication protocols in SDN demands highly flexible 

architectures that have the capacity to adapt to new protocols. TCAM-based techniques have 

difficulty providing the required flexibility, whereas the IP-Split-Bucket architecture meets the 

scalability factor by its design parameters.  

Compared to previously reported memory-less approaches, when configured for similar moderate 

size tables (18 k entries), the complexity of our solution is 60% less.  Moreover, the closest 

recently reported solution that can handle comparable size tables requires a large (7.7 Mb) 

internal memory, while IP-Split-Bucket requires no memory. Future work will focus on the 

Update-enabled IP-Split-Bucket architecture implementation on FPGAs and improving its 

capability of supporting fast updates. 
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