

UNIVERSITÉ DE MONTRÉAL

A SCALABLE HIGH-PERFORMANCE MEMORY-LESS IP ADDRESS LOOKUP ENGINE

SUITABLE FOR FPGA IMPLEMENTATION

IDEH SARBISHEI

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION

DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INFORMATIQUE)

NOVEMBRE 2016

© Ideh Sarbishei, 2016.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

A SCALABLE HIGH-PERFORMANCE MEMORY-LESS IP ADDRESS LOOKUP ENGINE

SUITABLE FOR FPGA IMPLEMENTATION

présenté par : SARBISHEI Ideh

en vue de l’obtention du diplôme de : Maîtrise ès Sciences Appliquées

a été dûment accepté par le jury d’examen constitué de :

M. GIOVANNI Beltrame, Ph. D., président

M. LANGLOIS J.M. Pierre, Ph. D., membre et directeur de recherche

M. SAVARIA Yvon, Ph. D., membre et codirecteur de recherche

Mme NICOLESCU Gabriela, Doctorat, membre

iii

DEDICATION

To my parents, for their everlasting love and support.

iv

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Prof. Pierre Langlois for his continuous support,

guidance and immense knowledge during the development of this work. I have been extremely

lucky to have an advisor whose office door was always open whenever I ran into a problem or

had a question. I could not have imagined a better advisor and mentor for my Master study. I

would like to express my gratitude to my thesis co-advisor Prof. Yvon Savaria for his insight and

useful comments that were very beneficial in my thesis completion. I would also like to thank

Shervin Vakili who was directly involved with many aspects of Chapter 4 and helped me in my

supervisor’s absence. I thank my fellow lab mates in LASNEP group, for their stimulating

discussions and encouragements. I must express my eternal gratitude to my parents and my

brother, who are my source of inspiration. Whatever I have in my life is because of their support

and unconditional love. Finally, to my boyfriend, Ali, I wish to offer my deepest thanks. He was

always there for me in many moments of crisis. He supported me from thousands of kilometers

distance and made this work much easier for me.

v

RÉSUMÉ

La recherche d'adresse IP est une opération très importante pour les routeurs Internet modernes.

De nombreuses approches dans la littérature ont été proposées pour réaliser des moteurs de

recherche d'adresse IP (Address Lookup Engine – ALE), à haute performance. Les ALE existants

peuvent être classés dans l’une ou l’autre de trois catégories basées sur: les mémoires ternaires

adressables par le contenu (TCAM), les Trie et les émulations de TCAM. Les approches qui se

basent sur des TCAM sont coûteuses et elles consomment beaucoup d'énergie. Les techniques qui

exploitent les Trie ont une latence non déterministe qui nécessitent généralement des accès à une

mémoire externe. Les techniques qui exploitent des émulations de TCAM combinent

généralement des TCAM avec des circuits à faible coût. Dans ce mémoire, l'objectif principal est

de proposer une architecture d'ALE qui permet la recherche rapide d’adresses IP et qui apporte

une solution aux principales lacunes des techniques basées sur des TCAM et sur des Trie.

Atteindre une vitesse de traitement suffisante dans l'ALE est un aspect important. Des

accélérateurs matériels ont été adoptés pour obtenir une le résultat de recherche à haute vitesse.

Le FPGA permettent la mise en œuvre d’accélérateurs matériels reconfigurables spécialisés. Cinq

architectures d’ALE de type émulation de TCAM sont proposés dans ce mémoire : une sérielle,

une parallèle, une architecture dite IP-Split, une variante appelée IP-Split-Bucket et une version

de l’IP-Split-Bucket qui supporte les mises à jours. Chaque architecture est construite à partir de

l’architecture précédente de manière progressive dans le but d’en améliorer les performances.

L'architecture sérielle utilise des mémoires pour stocker la table d’adresses de transmission et un

comparateur pour effectuer une recherche sérielle sur les entrées. L'architecture parallèle stocke

les entrées de la table dans les ressources logiques d’un FPGA, et elle emploie une recherche

parallèle en utilisant N comparateurs pour une table avec N entrées. L’architecture IP-Split

emploie un niveau de décodeurs pour éviter des comparaisons répétitives dans les entrées

équivalentes de la table. L'architecture IP-Split-Bucket est une version améliorée de l'architecture

précédente qui utilise une méthode de partitionnement visant à optimiser l'architecture IP-Split.

L’IP-Split-Bucket qui supporte les mises à jour est la dernière architecture proposée. Elle soutient

la mise à jour et la recherche à haute vitesse d'adresses IP. Les résultats d’implémentations

montrent que l'architecture d’ALE qui offre les meilleures performances est l’IP-Split-Bucket,

vi

qui n’a pas recours à une ou plusieurs mémoires. Pour une table d’adresses de transmission IPv4

réelle comportant 524 k préfixes, l'architecture IP-Split-Bucket atteint un débit de 103,4 M

paquets par seconde et elle consomme respectivement 23% et 22% des tables de conversion

(LUTs) et des bascules (FFs) sur une puce Xilinx XC7V2000T.

vii

ABSTRACT

High-performance IP address lookup is highly demanded for modern Internet routers. Many

approaches in the literature describe a special purpose Address Lookup Engines (ALE), for IP

address lookup. The existing ALEs can be categorised into the following techniques: Ternary

Content Addressable Memories-based (TCAM-based), trie-based and TCAM-emulation. TCAM-

based techniques are expensive and consume a lot of power, since they employ TCAMs in their

architecture. Trie-based techniques have nondeterministic latency and external memory accesses,

since they store the Forwarding Information Base (FIB) in the memory using a trie data structure.

TCAM-emulation techniques commonly combine TCAMs with lower-cost circuits that handle

less time-critical activities. In this thesis, the main objective is to propose an ALE architecture

with fast search that addresses the main shortcomings of TCAM-based and trie-based techniques.

Achieving an admissible throughput in the proposed ALE is its fundamental requirement due to

the recent improvements of network systems and growth of Internet of Things (IoTs). For that

matter, hardware accelerators have been adopted to achieve a high speed search. In this work,

Field Programmable Gate Arrays (FPGAs) are specialized reconfigurable hardware accelerators

chosen as the target platform for the ALE architecture. Five TCAM-emulation ALE architectures

are proposed in this thesis: the Full-Serial, the Full-Parallel, the IP-Split, the IP-Split-Bucket and

the Update-enabled IP-Split-Bucket architectures. Each architecture builds on the previous one

with progressive improvements.

The Full-Serial architecture employs memories to store the FIB and one comparator to perform a

serial search on the FIB entries. The Full-Parallel architecture stores the FIB entries into the

logical resources of the FPGA and employs a parallel search using one comparator for each FIB

entry. The IP-Split architecture employs a level of decoders to avoid repetitive comparisons in the

equivalent entries of the FIB. The IP-Split-Bucket architecture is an upgraded version of the

previous architecture using a partitioning scheme aiming to optimize the IP-Split architecture.

Finally, the Update-enabled IP-Split-Bucket supports high-update rate IP address lookup. The

most efficient proposed architecture is the IP-Split-Bucket, which is a novel high-performance

memory-less ALE. For a real-world FIB with 524 k IPv4 prefixes, IP-Split-Bucket achieves a

throughput of 103.4M packets per second and consumes respectively 23% and 22% of the Look

Up Tables (LUTs) and Flip-Flops (FFs) of a Xilinx XC7V2000T chip.

viii

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGEMENTS .. IV

RÉSUMÉ .. V

ABSTRACT ...VII

TABLE OF CONTENTS ... VIII

LIST OF TABLES ... X

LIST OF FIGURES ... XI

LIST OF SYMBOLS AND ABBREVIATIONS... XIII

CHAPTER 1 INTRODUCTION ... 1

1.1 Context ... 1

1.2 Motivation .. 2

1.3 Objectives ... 4

1.4 Thesis Outline .. 5

CHAPTER 2 RELATED WORK ... 6

2.1 Address Lookup Engine ... 6

2.2 CAM-Based Techniques .. 7

2.2.1 TCAM-Based Techniques .. 8

2.2.2 Hybrid TCAM-BCAM Technique ... 11

2.3 Trie-Based Techniques ... 13

2.4 CAM-Emulation Techniques ... 16

2.4.1 BCAM-Emulation Techniques ... 16

2.4.2 TCAM-Emulation Techniques ... 18

2.5 Comparison of the Existing Work .. 26

CHAPTER 3 PROPOSED ADDRESS LOOKUP ENGINE ARCHITECTURES 28

3.1 Full-Serial Architecture .. 28

3.1.1 Option A ... 29

ix

3.1.2 Option B ... 30

3.2 Full-Parallel Architecture ... 31

3.3 IP-Split Architecture .. 32

3.3.1 Decoder Block .. 32

3.3.2 Comparator Block .. 33

3.3.3 Priority Encoder Block ... 35

3.3.4 Next Hop Information Block .. 35

3.4 IP-Split-Bucket Architecture .. 35

3.4.1 Comparator Block .. 35

3.4.2 Priority Encoder Block ... 36

3.5 Update-Enabled IP-Split-Bucket Architecture ... 37

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION .. 40

4.1 Full-Serial Architecture .. 40

4.2 Full-Parallel Architecture ... 40

4.3 IP-Split Architecture .. 43

4.3.1 Synthesis Results of the Decoder Block .. 47

4.3.2 Synthesis Results of the Comparator Block ... 48

4.3.3 Synthesis Results of Priority Encoder Block ... 49

4.3.4 Synthesis Results of the NHIB ... 50

4.3.5 Discussion .. 50

4.4 IP-Split-Bucket Architecture .. 51

4.4.1 Synthesis Results of the IP-Split-Bucket Architecture .. 51

4.4.2 Comparison of IP-Split-Bucket Architecture and Existing Work 53

4.4.3 The Size and the Starting Bit Selection for the Bucket Identifier 54

4.4.4 Decoders Selection ... 60

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 62

REFERENCES .. 65

x

LIST OF TABLES

Table 1.1: A sample FIB .. 2

Table 2.1: TCAM and SRAM comparison [13] ... 13

Table 2.2: Comparison of existing CAM-based, trie-based and CAM-emulation techniques 27

Table 4.1: Maximum FIB size supported for Full-Serial with FPGAs .. 42

Table 4.2: Full-Parallel synthesis results for different sizes of FIB on Virtex-5 43

Table 4.3: Maximum FIB size supported for Full-Parallel with FPGAs 44

Table 4.4: Estimation of the number of used LUTs while applying 4 of 7-to-27 decoders 46

Table 4.5: Synthesis results of the DB ... 47

Table 4.6: Synthesis results of IP-Split-Bucket architecture for different FIB sizes on Virtex-7 .. 53

Table 4.7: Detailed comparison of existing work with IP-Split-Bucket .. 55

Table 4.8: Maximum bucket size (𝑚) for variable test cases with variable FIB sizes 56

xi

LIST OF FIGURES

Figure 1.1: Router functional components [3] ... 1

Figure 2.1: Address lookup engine [12] ... 6

Figure 2.2: Architecture of multi-chip structure and chip partitioning technique [11] 9

Figure 2.3: Two-level organization in TCAM [12] .. 10

Figure 2.4: Hardware interface for TCAM co-processor [12] ... 11

Figure 2.5: Hybrid architecture of TCAM and BCAM [24] .. 12

Figure 2.6: DuPI architecture [14] ... 15

Figure 2.7: Global DuPI architecture supporting updates [14] .. 15

Figure 2.8: Double level of pipelined processing elements [16].. 16

Figure 2.9: RCAM matching for IPv4 [27] .. 17

Figure 2.10: String matching with multi-character decoder [21] ... 18

Figure 2.11: TCAM design supporting variable word size [22] .. 19

Figure 2.12: Physical structure of dynamic reconfigurable FPGA-based CAM [22] 20

Figure 2.13: Architecture of SR-TCAM [20] ... 21

Figure 2.14: PEB of TCAM-emulation LPM [18] ... 22

Figure 2.15: Local LPM TCAM-emulation consists of MB and PEB [18] 23

Figure 2.16: Global LPM TCAM-emulation [18] .. 24

Figure 2.17: Underlying architecture scalable RAM-based TCAM [25] 25

Figure 2.18: Global view architecture [25] .. 25

Figure 2.19: Unit architecture [25] ... 26

Figure 3.1: Full-Serial Architecture ... 29

Figure 3.2: Full-Serial, architecture of the comparator using option A ... 30

Figure 3.3: Full-Serial, architecture of the comparator using option B ... 31

Figure 3.4: Full-Parallel architecture ... 32

Figure 3.5: IP-Split architecture ... 33

Figure 3.6: Example on AND operations of the comparator block ... 34

xii

Figure 3.7: IP-Split-Bucket architecture .. 36

Figure 3.8: Update-enabled IP-Split-Bucket architecture .. 39

Figure 3.9: Modified IP-Split-Bucket architecture .. 39

Figure 4.1: Comparison of option A and option B in terms LUTs utilization 41

Figure 4.2: Comparison of option A and option B in terms FFs utilization 41

Figure 4.3: Comparison of option A and option B in terms of clock period 42

Figure 4.4: Prefix distribution of a real-world IPv4 FIB [8] .. 44

Figure 4.5: Design space exploration for the size of decoders ... 47

Figure 4.6: Hardware resource usage of the comparator block .. 48

Figure 4.7: Clock period of the comparator block ... 48

Figure 4.8: Hardware resource usage of the priority encoder block .. 49

Figure 4.9: Clock period of the priority encoder block .. 49

Figure 4.10: IP address distribution into 256 buckets (BIs = 9, 𝐵𝐼𝑒=16) 52

Figure 4.11: LUT consumption of multiplexer (a) and priority encoder (b) of the PEB 58

Figure 4.12: PEB resource utilization estimation as a function of 𝑛 and 𝑚 58

Figure 4.13: A design space exploration on 𝐵𝐼𝑠 and 𝑛 .. 59

Figure 4.14: A zoomed-in section of the design space exploration on 𝐵𝐼𝑠 and 𝑛 59

Figure 4.15: Evaluation function results for 3000 iterations .. 61

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

ALE Address Lookup Engine

ALUT Address Lookup Table

APT Address Position Table

APTA Address Position Table Address

APTAG Address Position Table Address Generator

BCAM Binary Content Addressable Memory

BGP Border Gateway Protocol

BPT Bit Position Table

CAM Content Addressable Memory

CB Comparator Block

CLIPS Combined Length-Infix Pipelined Search

DB Decoder Block

DuPI Dual linear Pipelined architecture for IP lookup

FF Flip-Flop

FIB Forwarding Information Base

FPGA Field Programmable Gate Array

IoT Internet of Things

IP Internet Protocol

LL Lookup Latency

LPM Longest Prefix Match

LSB Least Significant Bit

LUT Lookup Table

LT Lookup Throughput

MB Match Block

ML Match Line

xiv

MSB Most Significant Bit

NHI Next Hop Information

NHIB Next Hop Information Block

OSPF Open Shortest Path First

PEB Priority Encoder Block

RCAM Reconfigurable Content Addressable Memory

RIP Routing Information Protocol

RIS Routing Information Services

ROM Read Only Memory

SDN Software Defined Networking

SRAM Static Random Access Memory

SR-TCAM SRAM based TCAM

TCAM Ternary Content Addressable Memory

TTL Time To Live

UL Update Latency

ULA Update Latency of Addition

ULD Update Latency of Deletion

ULM Update Latency of Modification

UT Update Throughput

UTA Update Throughput of Addition

UTD Update Throughput of Deletion

UTM Update Throughput of Modification

1

CHAPTER 1 INTRODUCTION

1.1 Context

A router is a network device that is responsible for routing data packets from their source host to

their destination host. As shown in Figure 1.1, a router consists of two functional components:

the control and data planes. The control plane deals with the system configuration and the update

information [1]. It uses the routing table information of different protocols such as Routing

Information Protocol (RIP), Open Shortest Path First (OSPF) and Border Gateway Protocol

(BGP) and removes non-essential routes to build a Forwarding Information Base (FIB) [2]. A

FIB is a table stored in the router’s memory that lists the routing information: destination IP

address, prefix size and Next Hop Information (NHI) [2]. Every update in the protocol routing

tables leads to an update of the FIB. The data plane uses the information extracted from the FIB

table to forward a data packet to its proper next node. A router has an Address Lookup Engine

(ALE) in its data plane, which is a special purpose engine that performs IP address lookup. IP

address lookup is a process that determines the next node to which a packet must be sent in order

to reach its destination. The ALE performs the Longest Prefix Match (LPM) algorithm on the

FIB. The LPM algorithm receives the destination IP address of the incoming packet as an input.

This algorithm finds a match with a FIB entry that has the largest prefix size. Next, the ALE

returns the NHI of the match that defines the output port number.

Figure 1.1: Router functional components [3]

R
o

u
ti

n
g

P

ro
to

co
l

FIB
Information

Construct and
Update the FIB

OSPF, BGP, RIP, …

2

An example FIB is shown in Table 1.1, consisting of three columns. The first column contains

the destination IP addresses known by the router, the second column defines the prefix size of

each entry and the third column is the NHI that determines the output port number of the router

corresponding to each entry. There is a special entry in every FIB that determines the default

route. The default route is used when the destination IP address of the incoming packet is

unknown to the router. The prefix size of the default route is equal to zero and its NHI is the

default port number. Suppose an IP address lookup is performed for an incoming packet with

destination IP address of 200.103.124.180 and the FIB shown in Table 1.1. Two matches are

found: one match with the entry #2 with prefix size of 24 and another match with the entry #4 of

the FIB with prefix size of 8. Therefore, since the prefix size of the entry #2 is larger than the

entry #4, it is reported as the LPM output. Thus, the router sends the packet on port #4.

Table 1.1: A sample FIB

Entry Destination IP addresses Prefix Size NHI

#1 132.207.153.197 32 5

#2 200.103.124.1 24 4

#3 132.207.123.67 16 1

#4 200.156.46.200 8 3

#5 0.0.0.0 0 Out of range output port

1.2 Motivation

The ever-increasing speed of digital networks demands a high performance realization of LPM in

network switches and routers. 5G is the fifth generation for mobile networks that meet new

demands of throughput and latency for the next generation technology. Upcoming network

devices, including ALEs, should be able to keep up with the performance of the 5G technology.

The data rate of 5G technology is up to 10 Gbps for hundreds of active users at once [4], while its

latency is in the order of the millisecond [5] [6].

To respect the constraints of the 5G technology, the performance of the ALE is evaluated using

two categories. The first category concerns the IP address lookup and the second category

3

concerns updating the FIB. In the first category, there are two metrics for evaluating the

performance of the IP address lookup: Lookup Latency (LL) and Lookup Throughput (LT). LL is

the delay between the arrival of one packet to the ALE until the corresponding information of the

LPM is available. LT is the number of incoming IP addresses handled in every time unit for one

ALE. In the second category, there are two metrics for evaluating the performance of the FIB

update: Update Latency (UL) and Update Throughput (UT). UL is the update delay, which

measures the amount of time it takes from placing an update request to its actual occurrence. UT

is the number of updates handled in a time unit for an ALE.

The control plane of a router can receive three types of update information: Addition (A),

Modification (M) and Delete (D). For an addition, a new IP address along with its NHI and prefix

size information is added to the FIB. In a modification, only the NHI corresponding to the match

is revised. In a delete, the entry corresponding to that address is removed from the FIB

completely. The latency and throughput can be measured for each type of update: ULA, UTA,

ULM, UTM, ULD, UTD. ULA and UTA are the update latency and update throughput of the

addition, respectively. ULM is the update latency of the modification while UTM corresponds to

the update throughput of the modification. ULD and UTD are dedicated to the update latency of

delete and update throughput of delete, respectively. Future ALEs should meet the requirements

of 5G technology in terms of LL and LT, and their update mechanism should respect the

constraints of ULA, UTA, ULM, UTM, ULD and UTD.

Apart from performance, another requirement for ALEs designed for 5G technology is to support

the growth of the Internet of Things (IoTs). The IoT is the network and communication of the

internet-enabled devices, systems, vehicles and other items that are connected to the internet. Due

to the ever-increasing growth of the IoT, there will be a great demand for more IP addresses and

thus larger FIBs in the routers [7]. Currently the FIB size for IPv4 addresses is near 500 k entries

while for IPv6 it is around 26 k entries [8]. In the near future, the number of IPv4 addresses is

expected to increase up to 2 M entries causing the depletion of IPv4 addresses [9]. This will

likely cause the number of IPv6 entries to increase rapidly instead [10]. In all cases, future ALEs

will have to support FIBs with a very large number of entries.

4

1.3 Objectives

The existing approaches for IP lookup can be categorized into three types: Content Addressable

Memory (CAM)-based [11], [12], [13], and trie-based search techniques [14], [15], [16], [17] and

CAM-emulation [18], [19], [20], [21]. CAM is a special type of high-speed memory that has the

ability to search its entire contents in one clock cycle. CAM-based techniques suffer from high

power consumption and high cost of CAMs. Trie-based techniques employ the trie data structure

in their design which causes nondeterministic latency and external memory accesses. CAM-

emulation techniques emulate the CAM functionality to avoid the shortcomings of CAM-based

techniques.

In this thesis, we propose multiple high-performance ALE architectures that support large FIB

tables. We suggest a novel architecture using CAM-emulation techniques to avoid the limitations

of CAM-based and trie-based techniques. The proposed architectures for ALEs should meet the

LL and LT requirements of the 5G technology and constraints of a potential next generation

designs in terms of FIB sizes. Our design should support a FIB with a size of around 500 k

entries for IPv4 addresses. In terms of LT, IP addresses normally arrive at a router at a rate of

between 150 M to 250 M packets per second. The maximum acceptable LL is application

dependent and varies between applications.

In summary, the main objectives of this thesis are:

 Proposing high performance architectures for IP address lookup supporting existing large

FIBs in accordance with networks constraints in terms of LT and LL.

 Avoid using expensive and power hungry CAMs in the design and producing comparable

results to CAM-based approaches in terms of logical resource usage and CAM cost.

 The proposed architectures must eliminate the drawbacks of trie-based techniques in terms of

using external memory usage and having nondeterministic latency.

 Simulating and synthesizing the proposed architectures and comparing their results together

and the existing work on IP address lookup.

5

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents the existing work on IP

address lookup and provides a comparison on the conventional approaches. Chapter 3 describes

the proposed architectures for IP address lookup in four sections: the Full-Serial (section 3.1), the

Full-Parallel (section 3.2), the IP-Split-Bucket (section 3.3), and the IP-Split-Bucket (section

3.4). Chapter 4 presents the experimental results of the proposed architectures and comparison of

the most efficient proposed architecture with CAM-based, trie-based and CAM-emulation

techniques. Chapter 5 concludes the thesis and highlights possible directions for future work.

6

CHAPTER 2 RELATED WORK

This chapter introduces the framework of the IP address lookup process in the ALE. It provides

an overview of the existing work on the IP lookup categorized into three types: CAM-based, trie-

based and CAM-emulation techniques. Section 2.1 presents an overall description of the ALE

and its structure. The remaining sections are dedicated to describing and comparing the existing

work.

2.1 Address Lookup Engine

The ALE performs the IP lookup on all entries of the FIB table. As shown in Figure 2.1, the ALE

consists of three main blocks: a Match Block (MB), a Priority Encoder Block (PEB) and a NHI

Block (NHIB) [12], [18]. A MB searches the FIB entries for all possible matches with the

incoming IP address. Match Lines (MLs), shown in Figure 2.1, specify whether there is a match

in the FIB or not. For example, in case of a match in address 𝑖, 𝑀𝐿(𝑖) would be 1 otherwise it

would be 0. A PEB receives all the MLs and selects the match with the highest priority. In a LPM

algorithm, the prefix size determines the priority. An NHIB contains a memory storing the output

port numbers dedicated for each entry of the FIB. The NHIB uses the address of the selected

match and gives the next hop number as its output.

The ALE architecture regardless of its NHIB is equivalent to a string matching engine. A string

matching engine searches for all occurrences of an input string inside a predetermined set of

target strings. When a match is found, the corresponding location is given as the output result.

Figure 2.1: Address lookup engine [12]

7

Each string is an ordered vector of symbols of a given alphabet. Latin, Binary and DNA are

examples of existing alphabets. High-performance string matching is required in several

applications, particularly in real-time systems such as IP address lookup. A string matching

engine with a binary alphabet and input string size of 32 (IPv4) or 64 (IPv6), can be applied for

the MB and the PEB of the ALE.

Several approaches have been proposed to implement the MB and PEB in prior work. CAM-

based techniques employ a CAM to perform the process of the MB and the PEB of the ALE [12].

Researchers using the trie-based techniques implement the MB using a trie data structure [14]. In

CAM-emulation techniques, researchers emulate the CAM functionality to implement the MB

and PEB to avoid the shortcomings of the CAM-based [22]. We review the previous approaches

on the IP address lookup in the following sections. Section 2.2 describes the CAM-based existing

work on IP address lookup. Section 2.3 and section 2.4 present the existing work using trie-based

and CAM-emulation techniques, respectively.

2.2 CAM-Based Techniques

A CAM is a memory that acts as the opposite of a standard RAM. A RAM receives an input

address and gives the data stored in the corresponding address. On the other hand, a CAM

receives a data as an input and passes the address of the data item, if it is present. In a CAM

search for an entry, there are three possible cases for a result:

1. If a match is found, the address of the match is the output. For some implementations, a CAM

gives the incoming data along with its match address as the outputs.

2. If no match is found, a default out-of-range address is generated as the output address or a

special error signal is activated.

3. If more than one match is found, the match with the highest priority is selected using a

priority encoder. The priority of the contents is design dependent. For instance, in the LPM

algorithm the match corresponding to the largest prefix size has the highest priority.

CAM-based techniques thus use CAMs to perform an instant search in the entire FIB. Despite the

high-speed search they offer, CAM-based techniques have three drawbacks: their throughput is

limited by the CAM access speed, they consume high power, and they are expensive. Aiming to

mitigate these drawbacks, some researchers have proposed techniques and algorithms to

8

minimize the size of required CAMs. These techniques commonly combine CAMs with low-cost

circuits that handle less time-critical activities. The existing work using CAM-based techniques

can be classified based on the CAM type. There are two types of CAMs: Binary CAMs (BCAM)

and Ternary CAMs (TCAM). Section 2.2.1 presents the TCAM-based approaches to solve the

LPM problem. Section 2.2.2 reviews an approach using a hybrid architecture of TCAMs and

BCAMs for IP address lookup.

2.2.1 TCAM-Based Techniques

A TCAM is a type of CAM that provides a flexible search in the memory. Bits in a TCAM have

three states: 0, 1 and ternary state. The ternary state is defined with ‘X’ and is a ‘don’t care’. It

provides the possibility of matching a ‘1’ and a ‘0’ at the same time. For instance, the data word

‘11X’ is a match with either ‘110’ or ‘111’. Thus, there is a possibility of finding multiple

matches in a TCAM. Therefore, a TCAM requires a priority encoder in order to find the entry

with the highest priority.

There are two types of priority mechanisms in a TCAM: explicit and inherent. In an explicit

priority mechanism, an extra field of priority is stored in the TCAM along with its contents.

Therefore, the match with the highest priority is selected based on its priority field. This

mechanism is easy to update but consumes more resources since an additional priority field is

added to every entry of the table. In an inherent priority mechanism, the contents are sorted based

on their priority. Therefore, the match with the lowest address in a TCAM is the match with the

highest priority. This mechanism is costly to update since it requires resorting all the contents of

the table when a new IP address is added to the table [22].

Existing TCAM-based approaches to implement the MB and PEB of an ALE will now be

presented in the order of their publication years.

Zheng et al. (2004) proposed a TCAM-based ALE with high throughput and low power

consumption [11]. They applied multiple parallel partitioned TCAM chips in their architecture to

achieve high throughput. They divided the FIB into 16 evenly distributed groups of IP addresses.

Each group is stored inside one of the partitions of the TCAMs. A “load-balance-based”

algorithm is proposed to balance the lookup traffic of the 16 groups between the partitioned

9

TCAMs. In Zheng et al.’s approach one partition of the TCAM is enabled at a time to minimise

the power consumption. For every lookup, the incoming IP address defines the enabled partition.

The architecture is shown in Figure 2.2. It consists of four sections: index logic, priority selector,

lookup unit and ordering logic. Index logic starts the lookup process by determining the enabled

partition using the incoming IP address. Due to the possibility of having multiple TCAMs with

enabled partitions, a priority selector is required to choose the least busy TCAM to perform the

lookup. Since each lookup unit contains one TCAM chip, the problem size is decreased into a

partition in only one of the TCAMs. The last process is the ordering logic that puts all the NHIs

of incoming IP addresses in the same order of the incoming traffic.

Figure 2.2: Architecture of multi-chip structure and chip partitioning technique [11]

For implementation results, Zheng et al. have proposed an example with 4 TCAMs of size 256

𝑘 × 36 b which contain 8 partitions. Supporting a FIB with maximum size of 819.2 k, it achieved

a 133 MHz clock frequency. Maximum power consumption of the implementation was 4 watts

and the maximum lookup throughput was 533 Mpps with an average processing latency of 75 ns.

In 2005, Pao presented a new organization for commercial TCAMs of the SiberCAM family [23]

for the purpose of IPv6 Address Lookup [12]. Available commercial TCAM chips have a fixed

word length size of 36, 72, 144 or 288 bits. Therefore, for a 128-bit IPv6 address lookup

technique, a commercial TCAM with word length of 144 bits is required for all prefixes

Selector

#k

#1

#2

.

.

.

#k

10

regardless of their actual size. Pao proposed a novel two level organization that exploits the

prefix length distribution of real-life FIBs. Most IPv6 prefixes are less than 64 bits long. The

largest width of the available TCAMs in the 64-bit range is 72-bit TCAMs. Therefore, a 72-bit

TCAM is applied for the IP addresses with prefix size of 72 or less. For prefix sizes of more than

72 bits, the IPv6 address lookup process is split into two steps handled by 72-bit TCAMs. Pao’s

approach leads to efficient TCAM utilization. It improves space utilization by 50% and reduces

lookup time by 30% to 45% compared to the conventional method.

Figure 2.3 illustrates a sample FIB organized inside a TCAM and a SRAM following Pao’s

approach. The MB is divided into two partitions 𝑃𝑠 and 𝑃𝑙. The 𝑃𝑠 partition contains table entries

with prefix sizes less than 72 bits (not a marker) and the first 72 bits of prefix sizes more than 72

bits (marker). The 𝑃𝑙 partition contains the entries with prefix sizes more than 72 bits (marker).

When a match is found in the 𝑃𝑠, it is checked whether the match is a marker or not. If the match

is not a marker the NHI of that address is valid. Otherwise, we need to calculate the address of

NHI based on the marker and the remaining 56 bits of the IPv6 address.

Figure 2.3: Two-level organization in TCAM [12]

Figure 2.4 shows the architecture of the overall system. First, a network processor sends all the

incoming 128-bit IPv6 addresses to the input FIFO buffer. Second, the level-selection module

00110010

10110110

011100∗

10110∗

∗(default)

.

.

.

.

.

.

10011101

011001∗

∗(dummy)

FIB

.

.

.

s v Next
Hop

tag

1 1 1 5 1001

1 1 1 3 0110

.

11

sends a 1-level command for the prefix sizes smaller than 72 and a 2-level command for prefix

sizes more than 72. Moreover, it sends the search key to the TCAM for the second cycle

operation. The pipelined TCAM and the SRAM are the third and fourth modules defining the

NHI. The fifth module consists of two registers: B1 and B2. For a longest match with prefix sizes

of more than 72-bits, five fields of the B2 register specify the second cycle operation. However,

for a longest match with a prefix size less than 72 bits, the results are sent directly to the output

FIFO buffers regardless of the operations in B2.

Figure 2.4: Hardware interface for TCAM co-processor [12]

2.2.2 Hybrid TCAM-BCAM Technique

A BCAM is the simplest type of CAM with the two states 0 and 1. Applications that require an

exact match utilize BCAMs. It is not possible to find multiple matches simultaneously in a

BCAM. Therefore, BCAMs have a simpler comparison circuit than TCAMs. They require fewer

transistors and have lower power consumption than TCAMs [24]. Some of the existing works

exploit the advantages of BCAMs by replacing TCAMs with BCAMs when possible.

In 2010, Sun and Kim proposed a hybrid TCAM-BCAM-based ALE that stored the fixed FIB

parts in BCAMs instead of TCAMs [24]. They suggested a power efficient architecture with low

area consumption compared to traditional TCAMs. Sun and Kim studied the distribution of IP

address prefixes of real-world FIBs of the years 1997 to 2009. Using the characteristics of prefix

distributions, they divided the FIB into seven groups (𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7) based on their

prefix sizes. The groups 𝑃1 to 𝑃7 contain IP addresses with prefix sizes of 8, 9-15, 16, 17-23, 24,

25-31, 32, respectively. All the IP addresses of each group are divided into two parts: fixed and

12

unfixed. The fixed part contains only the binary values (where the state of ‘X’ does not exist) that

are handled by BCAMs. The unfixed part contains the remainder of the IP addresses that are

implemented in TCAMs. The purpose of this division is to minimise the area and power

consumption of the design by replacing TCAMs by BCAMs whenever possible.

The approach presented in [24] splits the LPM process into a three-stage operation as shown in

Figure 2.5. The first two stages are equivalent to the MB of the ALE. The first stage consists of

parallel TCAMs and BCAMs giving the comparison results of the unfixed and fixed parts,

respectively. The second stage is the parallel AND operations calculating the match results. The

last stage is equivalent to the PEB that consists of two levels of priority encoders. The PEB

consists of multiple levels of small priority encoders instead of one large priority encoder in order

to reduce the complexity of the design.

Figure 2.5: Hybrid architecture of TCAM and BCAM [24]

By exploiting the characteristics of BCAMs and TCAMs, this hybrid architecture results in an

improvement in power consumption, area usage and throughput. In terms of update, a traditional

TCAM sorts a large FIB based on the prefix sizes. However, an update of Sun and Kim’s

approach requires multiple small groups of IP addresses to be sorted based on their prefix sizes in

parallel. Therefore, it reduces the number of clock cycles for an update process to 50% compared

Priority
Encoder

Priority
Encoder

Priority
Encoder

Priority
Encoder

13

to traditional TCAMs [24]. Moreover, this parallel update leads to an increase in the throughput

of IP packet processing.

2.3 Trie-Based Techniques

Static RAM (SRAM) memories are more efficient than TCAMs in terms of hardware complexity

and performance. SRAMs support higher speed, more density and lower power consumption

compared to TCAMs, as shown in Table 2.1. Since commercially available TCAMs have fixed

word length size with bounded depth, they are less versatile to new protocols and addressing

techniques compared to SRAMs. Moreover, TCAMs are more expensive than SRAMs. Some

approaches [14], [15], [16], [17], [20], [25] exploit the advantages of using SRAMs instead of

traditional TCAMs such as trie-based techniques.

Table 2.1: TCAM and SRAM comparison [14]

Type of Memory
Maximum Clock Rate

(MHz)

Cell Size (Number of

Transistors)

Power Consumption

(Watts)

TCAM (18 M bits Chip) 200 16 12~15

SRAM (18 M bits Chip) 400 6 ≈ 0.19

Trie-based techniques create search trees from the FIB and store the tree information in SRAMs

using a trie data structure [14], [15], [16], [17]. Trie-based techniques require traversing the

search tree from the root node to leaves serially. Therefore, these techniques are inherently

slower than TCAM-based ones. As the size of the FIB increases, the memory space required to

store the trie information grows rapidly. For large LPM problems, trie information cannot be

stored in on-chip memories. Hence, the utilization of large external memories is inevitable [15].

External memory access is the main performance bottleneck for trie-based techniques. Several

approaches attempt to minimize either the number of external memory accesses for a search or

their latency [16], [17]. However, accessing external memory remains the main performance-

limiting factor in large trie-based designs.

In 2006, Baker and Prasanna [17] proposed an efficient string matching approach using a trie-

based technique. They suggested a tool that provides automatic synthesis of highly efficient

NIDS on an FPGA. This tool generates two architectures. The first architecture is a pre-decoded

14

shift and compare block. A high-level graph-based partitioning of strings is applied in the first

architecture to reduce the size of decoders and share the shift registers. With partitioning, the goal

is to maximize the similarity of patterns inside each partition. The second architecture is a tree-

based prefix sharing block that is responsible for reducing the redundant comparisons. Hence, the

tool they proposed improves the area consumption and performance while reducing redundant

comparisons.

Hoang Le et al. (2008) exploited the advantages of SRAMs over TCAMs by implementing a

SRAM-based IP-lookup architecture with a binary-tree-based design on FPGA. It supports a FIB

of 228 k entries with a high throughput of 324 MLPS (multi lookup per second) while using an

external SRAM to support a larger FIBs [14]. Figure 2.6 shows the global view of the proposed

DUal linear Pipeline architecture for IP lookup (DuPI). The FIB is converted into a binary search

tree according to their prefixes sizes. The tree information is stored inside a SRAM. Using two

parallel-pipelined levels and a dual Read/Write SRAM, this architecture supports two packets at a

time. The maximum number of pipelined stages is determined by two factors: the size of the tree

and the maximum number of operations required to traverse the tree.

Figure 2.7 illustrates the top-level architecture of the DuPI supporting updates. It handles two

types of updates: in-place update and new-route update. In-place update modifies, removes or

adds every incoming IP to the binary search tree individually after the tree is constructed. A new-

route update changes the binary search tree completely and requires a rebuild of the tree.

In 2011, Yang, Erdem and Prasanna proposed an FPGA-based architecture for IP lookup using

trie-based technique [15]. They suggested a Combined Length-Infix Pipelined Search (CLIPS)

that performs a LPM in 𝑙𝑜𝑔 (𝑙 − 𝑐) phases, supposing that 𝑙 is the size of the IP address and 𝑐 is

a design constant. Each phase has an individual local infix table mapped to an FPGA using on-

chip BRAMs and off-chip SRAMs. Using external memories, CLIPS supports very large FIBs

with high throughput. According to the simulation results for a 9.5 M - entry IPv4 FIB, the

CLIPS architecture supports 312 MLPS throughput while using 4 external SRAM memories with

28 Mb of BRAM on chip memory.

15

Figure 2.6: DuPI architecture [14]

Figure 2.7: Global DuPI architecture supporting updates [14]

In 2013, Matoušek, et al. [16] proposed a trie-based approach introducing memory efficient

dedicated hardware for IP address lookup. They suggested a new representation of IP prefix set in

memory applying novel types of nodes and an algorithm to map the nodes to the tree. The

generated tree consumes less memory compared to existing trie-based approaches. The proposed

architecture consists of several pipelined processing elements as shown in Figure 2.8. Each

processing element is responsible for one step of a LPM algorithm. Using dual port memories

and two levels of pipeline, the performance is improved by a factor of two.

Previous LPM
flow

information

Previous LPM
flow

information

Previous LPM
flow

information

Previous LPM
flow

information

16

In 2016, Mun and Lim presented a trie-based IP address lookup using a Bloom filter [26]. To

improve the efficiency, they reduced the number of false positive results of the bloom filter

significantly using the characteristics for the trie-based techniques. Consequently, the number of

off-chip trie accesses of non-existing nodes is reduced. They performed an IP address lookup

using a reasonable amount of on-chip Bloom filter and off-chip trie accesses.

Figure 2.8: Double level of pipelined processing elements [16]

2.4 CAM-Emulation Techniques

Some researchers proposed approaches to emulate the functionality of commercially available

CAMs while reducing their cost and power consumption. These approaches are known as CAM-

emulation techniques [18], [19], [20], [21]. Taking advantage of FPGA configurability,

implementing ALEs on FPGAs offers flexible and scalable IP address lookup process. The

objective of CAM-emulation technique is to provide a fast and parallel search that addresses the

main shortcomings of CAM-based approaches. It avoids the high hardware cost and high power

consumption of CAMs, while providing comparable performance. In the following, some of the

existing work on CAM-emulation technique are categorized into two groups based on the type of

the emulated CAM: BCAM-emulation and TCAM-emulation techniques.

2.4.1 BCAM-Emulation Techniques

In a BCAM-based FIB, only one match is allowed at a time. Therefore, no priority encoder is

required for a BCAM. To convert a FIB into a BCAM-based FIB, all the entries of the FIB with

prefix size less than 32 bits should be expanded to 32-bit size. After the 32-bit expansion, it is

possible to have multiple equivalent entries. For such a case, all entries except the one with the

Processing Element Processing ElementIPv4/IPv6 address NHI

Dual Port

RAM

Dual Port

RAM

Processing Element Processing ElementIPv4/IPv6 address NHI. . .

. . .

17

largest prefix size are removed from the FIB. As a result, the FIB is adapted to the rules of the

LPM for IP address lookup. In this section, we discuss an existing approach that emulates the

BCAM functionality for the LPM problem.

In 2000, Guccione et al. in [27] proposed a run-time reconfigurable high-speed implementation

of BCAM on FPGA called Reconfigurable CAM (RCAM). RCAM produces a faster, smaller and

more adjustable BCAM compared to traditional ones. Figure 2.9 illustrates the MB of the RCAM

used for IPv4 address lookup. The incoming IPv4 address is divided into 8 groups of 4 bits. The

comparison of each group is handled by one Look Up Table (LUT). There are two intermediate

AND gates handling the results of every four LUT. As shown in Figure 2.9, the final match result

is the output of a final AND gate applied on the results of the intermediate AND gates. In this

approach, the data in the FPGA are stored in LUTs instead of Flip Flops (FFs). This leads to a

reduction in the CAM’s size and an increase in its throughput [27].

The JBits tool is applied to reconfigure the BCAM and modify different parts of the FPGA at

run-time, such as LUTs. Therefore, it is possible to resize dynamically the RCAM at run-time.

This results in having a possibility of allocating and reallocating the BCAM resources at run-

time. In [27], the authors does not present implementation results for their approach except one

test case. The maximum supported table-sizes for the RCAM implementation on the Virtex

V1000 FPGA are 3 k and 1 k for IPv4 and IPv6 addresses, respectively [27]. However, the size

of real-world FIBs are larger as mentioned in section 1.2. For example, the Mae-West FIB [14] is

27 times larger than the supported table size.

Figure 2.9: RCAM matching for IPv4 [27]

18

In 2004, Clark and Schimmel proposed a BCAM-emulation approach for string matching [21].

The authors suggested an FPGA implementation of a scalable string matching design supporting

network constraints. Their approach allows adjusting the trade-off between capacity and

throughput according to application requirements. They applied multi-character decoders to their

design in order to improve performance and eliminate redundant comparisons in string matching.

The multi-character decoder shown in Figure 2.10 processes multiple input strings at once and

provides all possible comparison results at once using character decoders.

Figure 2.10: String matching with multi-character decoder [21]

2.4.2 TCAM-Emulation Techniques

TCAM-emulation techniques have been proposed for many TCAM applications such as IP

address lookup, to replace expensive TCAMs with low cost circuits.

In 2002, Ditmar et al. suggested a dynamically reconfigurable FPGA-based TCAM-emulation

design for IP characterizations [22]. IP characterization is the procedure of classifying the packets

based on the information in their header. For an IPv6 characterization, the TCAM should be 315

bits wide in order to contain all the information of the IPv6 header such as source address,

destination address, incoming link, outgoing link, etc. Thus IP characterization cannot be easily

supported by commercially available TCAMs, since a TCAM’s word length size is not usually

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.

19

equal to 315 bits. Ditmar et al. described a TCAM-emulation design for IPv6 characterization

with the following abilities:

1. Supporting variable size TCAM search words

2. Dynamic update of the FPGA using the JBits tool

3. A hybrid explicit-inherent priority mechanism for a more efficient update

The authors propose dividing each search word into 5 pipelined stages of blocks of 64-bits and to

connect the blocks to each other with shift registers. Since ternary states are not required in the

comparison in a TCAM, the blocks containing the ternary states are not stored. The reduction in

the size of the TCAM word is shown from ‘a’ to ‘c’ in Figure 2.11. If no block is removed in the

design, a match result is given every 5 cycle. In order to respect the 5 cycles of the match,

deletion of a ternary block leads to two consecutive levels of pipelined stages. Consequently,

there is a possibility of storing variable-size words. Moreover, there is no waste of space in the

TCAM. Consequently, it is possible to store more entries.

Figure 2.11: TCAM design supporting variable word size [22]

20

The general architecture of this approach is presented in Figure 2.12. The MB implemented by

the structure shown in Figure 2.11, finds multiple matches with the incoming data (𝐷𝑎𝑡𝑎𝑖𝑛).

Therefore, the MB is followed by the PEB to find the match with the highest priority among all

possible matches. In order to exploit the advantages of both priority mechanisms, the authors

employ a hybrid explicit-inherent priority encoder. As shown in Figure 2.12, beside a typical

priority encoder they have added a switch box configured by JBits tools. The switch box is

responsible for routing the possible matches to the priority encoder. There are 8 possible priority

values for the entries. When there are multiple matches with the same priority value, inherent

priority is applied.

According to Ditmar et al., the most efficient TCAM implementation for IPv6 characterisation

could fit a maximum of 256 320-bit words where an inherent/explicit priority mechanism is

applied. For this case, there is a 47% utilization of the Xilinx Virtex XCV1000 FPGA while

achieving a frequency of 17.2 MHz and throughput of 3.4 M searches per second.

Figure 2.12: Physical structure of dynamic reconfigurable FPGA-based CAM [22]

In 2012, Ullah et al. proposed a SRAM-based TCAM-emulation design i.e. SR-TCAM [20]. SR-

TCAM is a generic architecture, applicable to any TCAM application. As shown in Figure 2.13,

this architecture is specified into the MB and the PEB. The entries are stored in SRAMs instead

of TCAMs in this architecture. Therefore, the conventional TCAM is divided vertically into 𝑛

groups. The groups are stored in corresponding SRAMs known as Bit Position Tables (BPTs)

and Address Position Table (APT).

21

To perform the search, the incoming 𝑊-bit search-word is partitioned into 𝑛 sub-words of 𝑤 bits;

where 𝑊 = 𝑛 × 𝑤. Each sub-word is sent to its corresponding BPT to check for its availability.

Every BPT accepts 𝑤 bits as an input and contains all possible combinations of 𝑤 bits (2𝑤 bits).

For example, the 𝑖𝑡ℎ sub-word of the incoming search-word is checked inside the 𝑖𝑡ℎ BPT for its

availability. If the value of the sub-word is 𝑀, then the 𝑀𝑡ℎbit among all the 2𝑤 bits of the

corresponding BPT is checked. The BPT has 1-bit output of 0 or 1. When the output value is ‘1’,

a sub-word match is occurred. Otherwise, the search process is stopped.

If all BPTs have outputs with a value of ‘1’, then the Address Position Table Address Generator

(APTAG) will be activated. The APTAG generates a value that corresponds to a row inside the

APT. The APT contains 2𝑤 rows of 𝐾 bits. Each row is dedicated to one possible sub-word value

that contains all the 𝐾 addresses of the TCAM words. Therefore, every APT accepts an Address

Position Table Address (APTA) generated by APTAG to check inside its APT. If there is a ‘1’ in

the 𝑗𝑡ℎ position of the corresponding row, the value of 𝑗 indicates the location of the sub-word

inside the TCAM.

The last step is checking all the APT outputs with value of ‘1’ to find those with common

positions. In other words, if all the matched sub-words are dedicated to the same address position,

there is a match with the input word on that position. For that matter, a 𝐾-bit AND gate is applied

to find all potential matches of the incoming search-word. Next, the output of the 𝐾-bit AND gate

is sent to the PEB to find the match with the highest priority.

Ullah et al. implemented the SR-TCAM for a table size of 512×36 on a Virtex-5 xc5vlx220

FPGA. It consumes 1966 LUTs and 1975 FFs. For that design, the SR-TCAM achieves a clock

period of 48.7 ns and power consumption of 2.16 mW.

Figure 2.13: Architecture of SR-TCAM [20]

In 2013, Rasmussen et al. proposed a TCAM-emulation implementation of the LPM on FPGA

[18]. The implementation of the MB is equivalent to ALE. On the other hand, the PEB is

22

implemented by two approaches: CN-LPM and G-LPM. In the CN-LPM architecture proposed

by Rasmussen et al., the PEB is implemented by a pipelined multi-level address encoder as

shown in Figure 2.14. The PEB has 𝑁 − 2 inputs for a FIB of 𝑁 entries. The inputs of the PEB

are identified with 𝑀𝐿𝑚. The 𝑀𝐿𝑚 indicates the match result and its prefix length of the

𝑚𝑡ℎ entry of the FIB. There are several comparator blocks in every level of the PEB. The 𝐶𝑖,𝑗

block compares two of the 𝑀𝐿𝑚s to find the match with largest prefix. Therefore, the output of

every comparator consists of: the prefix length and Least Significant Bit (LSB) of the address of

the match. Consequently, at each level one bit is added to the previous match address, which

provides the final address of the match with longest prefix size. The final match address is used

by the NHI to find the output port number.

Figure 2.14: PEB of TCAM-emulation LPM [18]

As shown in Figure 2.15, Rasmussen et al. implemented the G-LPM architecture for local LPM

process that is proposed by Gamache, et al. [28]. The MB consists of 𝑁 parallel comparator

blocks (TC) containing the 𝑁 entries of the FIB. The sequential pipelined levels of the PEB are

shown in Figure 2.15. They leave out all the matches except the match with the longest prefix

23

size in a step by step operation. For IPv6 address lookup, with prefix sizes in the range from 0 to

128, it requires 7 levels of pipelined levels. Each pipelined level is responsible for one bit of the

prefixes. In the first level, the validity of all the most significant bits are checked. Only the

survivors of the comparison with a validity are sent to the next level. This process continues until

there is a local winner (one survivor) which is the LPM between of the 𝑁 inputs.

The FIB is divided into several sections, with each section handled by a local LPM block. As

shown in Figure 2.16, all the local LPM blocks are processed in parallel to find the global LPM.

Therefore, to find the global winner, all the local winners go into the same process as the local

LPM, called global LPM. Finally, the address of the global winner is used to give the NHI as

shown in Figure 2.16.

This architecture supports a fast incremental update of the FIB. Moreover, there is no restriction

in the order of storing the entries in the FIB. To compare with traditional TCAM, a FIB of 1024

entries is implemented on the CN-LPM and G-LPM. The implementation results show an

increase of 771% and 789% in the number of Adaptive LUTs (ALUT) of the CN-LPM and G-

LPM, respectively.

Figure 2.15: Local LPM TCAM-emulation consists of MB and PEB [18]

×.
.
.

. . .

24

Figure 2.16: Global LPM TCAM-emulation [18]

In 2013, Jiang proposed a power efficient FPGA-based TCAM-emulation architecture [25].

Similar to Ullah et, al.’s approach [20], Jiang employed small units of SRAM-based TCAMs.

Figure 2.17 shows the architecture without its update logic. All the FIB is partitioned into 𝑝

parallel RAMs. The incoming search key to the MB has the size of 𝑤 that is divided into 𝑝 small

words of size 𝑤𝑖 sent to 𝑅𝐴𝑀𝑖. The size of 𝑅𝐴𝑀𝑖 is equal to 2𝑊𝑖 × 𝑁. RAMi checks for a match

on a small portion (𝑤𝑖) of the input world (𝑤); where the width of the word inside 𝑖𝑡ℎ RAM

partition is equal to 𝑤𝑖. In case of a match in a partitioned RAM, there is a bit value of 1 in N-bit

output in the location of the match. Afterwards, the results of all partitions are sent to an AND

gate. If a match has been found on 𝑖𝑡ℎ word of the TCAM, then the 𝑖𝑡ℎ bit must remain 1 in the

final result of the AND gate. The output of the AND gate illustrates all possible matches

therefore it is equivalent to the output of the MB. Subsequently, all the results are sent to the PEB

to find the match with the highest priority. In this architecture, the inherent priority mechanism is

applied. The output port named match has the value of 1 in case of a match and the output port

named ID defines the position of the match.

.

.

.

.

.

.

25

Figure 2.17: Underlying architecture scalable RAM-based TCAM [25]

Figure 2.18 illustrates the top level architecture of Jiang’s approach that consists of several units.

Each unit is equivalent to the architecture shown in Figure 2.19. Each unit contains a 𝑈 × 𝑊

RAM-based TCAM-emulation block identical to the block shown in Figure 2.17.

Figure 2.18: Global view architecture [25]

As shown in Figure 2.19, the variable 𝑀𝑎𝑡𝑐ℎ𝑖𝑛of each unit specifies the existence of a match in

the previous units. In case of a match in the previous units, the multiplexer chooses the previous

match since it has the higher priority. Otherwise, 𝐼𝐷𝑜𝑢𝑡 is chosen based on the match that is found

in the existing unit. The proposed architecture in [25] presented a beneficial implementation of

TCAMs on FPGA compared to the aforementioned approaches in the literature. Jiang aimed for

an FPGA-based design of a TCAM with efficient power consumption while supporting large

TCAM sizes.

.

.

.

. . .

#
. . .

.

.

.

Priority
Encoder

.

.

.

26

Figure 2.19: Unit architecture [25]

2.5 Comparison of the Existing Work

In this section, we present a comparison of the existing approaches in the literature. Each column

of Table 2.2 shows one property of the applied technique. The first column specifies each

approach by their reference number. The second column specifies the type of technique. The

third one defines the applied method to implement the MB; whether it uses logical resources of

FPGAs, memories, TCAM or BCAMs. The fourth column defines the type of the priority

algorithm used for each technique (Inherent or Explicit). The fifth column defines whether the

proposed approach supports an update mechanism to reconfigure the FPGA or not. The sixth

column defines the FPGA family used in each approach. The sixth column determines the size of

the tested design in each approach. The last column specifies the hardware resource usage of the

FPGA implementation for each design.

27

Table 2.2: Comparison of existing CAM-based, trie-based and CAM-emulation techniques

Approach Technique MB PEB Update Mechanism FPGA family Table Size LUTs FFs

[27]

(1990)

BCAM-

emulation
Cells N/A

JBit tool

(Configurability at

run-time)

Virtex

XC2V1000

3 k×

32

1 k×

64
- -

[22]

(2002)

TCAM-

emulation
Cell

Explicit and

Inherent

JBit tool

(Configurability at

run-time)

Virtex

XCV1000
256× 320 54 k 216 k

[28]

(2003)

TCAM-

emulation
N/A Explicit

Fast Incremental

Update
Stratix IV 1024× 64 15.8 k 11.3 k

[11]

(2004)

TCAM-

based

Commercial

TCAMs

Commercial

TCAMs
N/A - - - -

[21]

(2004)

BCAM-

emulation
Cells N/A N/A

Virtex-2

8000
17,537× 32 55 k 55 k

[17]

(2006)
Trie-based Cells Cells N/A

Virtex-2

XCVP100
602 × 20 6 k 6 k

[24]

(2010)

Hybrid

TCAM-

BCAM-

based

Commercial

TCAMs/BCAMs
Inherent Parallel Update - - - -

[15]

(2011)
Trie-based

Cells, SRAM,

External RAM

Cells, SRAM,

External

RAM

Incremental and

Dynamical Update

Virtex

SX475T
9.5 M× 32 7 k 22 k

[20]

(2012)

TCAM-

emulation
SRAM Inherent N/A

Virtex

XC5VLX220
512×36 1.9 k 1.9 k

[18]

(2013)

TCAM-

emulation
N/A Explicit

Fast Incremental

Update
Stratix IV 1024× 64 15.5 k 10 k

[25]

(2013)

TCAM-

emulation
RAM Inherent N/A

Virtex

XC7V2000T
4096×150 182 k 182 k

[16]

(2013)
Trie-based Cells Cells N/A

Virtex

XC6VSX475T
442,748× 32 88 k 44 k

28

CHAPTER 3 PROPOSED ADDRESS LOOKUP ENGINE

ARCHITECTURES

In this Chapter, we propose and describe in detail four different ALE architectures: Full-Serial,

Full-Parallel, IP-Split and IP-Split-Bucket. The advantages and drawbacks of each architecture

are explained as well. Section 3.1 presents the Full-Serial architecture. Section 3.2 describes the

second proposed architecture called Full-Parallel. The third architecture is the IP-Split

architecture described in section 3.3. The last architecture is IP-Split-Bucket architecture that is

described in section 4.4.

3.1 Full-Serial Architecture

The Full-Serial architecture is a memory-based TCAM-emulation architecture for IP address

lookup. It consists of two components: a memory and a comparator. The first component is a

memory that stores all the entries of the FIB sorted based on their prefix size. The second

component is a single comparator that performs a serial comparison of the incoming IP address

with the memory entries. The first match to occur in the serial search determines LPM output.

The address of the match is determined using a counter (𝑐𝑛𝑡) that determines the position of the

search and is incremented at every cycle. The first match can occur in the first cycle (first entry)

or in the 𝑁𝑡ℎ cycle (𝑁𝑡ℎ entry) for a FIB of 𝑁 entries. Therefore, the search time is equal to 𝑁 2⁄

in average.

Figure 3.1 shows the Full-Serial architecture applied for an IPv4 FIB with 𝑁 entries. The memory

consists of 𝑁 entries of 40 + 𝑃 bits. Each entry contains 32 bit of IPv4 address, 𝑃 bits of prefix

and 8 bits of NHI. Since the egress port IDs of every router has 8 bits, the NHI is stored with 8

bits in the memory. This architecture was implemented on an FPGA using two options. In option

A, the prefix size is stored using 32 bits (𝑝 = 32), while in option B it is stored with 6 bits (𝑝 =

6). The size of 𝑃 determines the format for storing the FIB entries and the comparator

architecture. The following subsections describe the detailed comparator architecture of both

proposed options for IPv4 ALE.

29

Figure 3.1: Full-Serial Architecture

3.1.1 Option A

In Option A, there is a 32-bit prefix entry with 𝑖 bits of ones followed by 32 − 𝑖 bits of zeros,

where 𝑖 determines the prefix size. For instance, if the prefix size is equal to 10, the 10 MSB of

the prefix are equal to one and the remaining bits are equal to zero. The architecture of the

comparator for Option A is shown in Figure 3.2. The comparator performs a comparison of the

𝑐𝑛𝑡𝑡ℎ entry of the FIB and the incoming IP address using two 2-input AND, one 2-input OR and

one 32-input NOR. The first AND logic has the IP address of the 𝑐𝑛𝑡𝑡ℎ entry and its prefix as its

inputs. Another AND logic has the incoming IP address and the prefix size of the 𝑐𝑛𝑡𝑡ℎ entry as

its inputs. The results of the two latter AND operations are tested for equality by an OR and a

NOR logic. In case of equality, a match is found (𝑣𝑎𝑙𝑖𝑑 = 1) and the process is terminated.

Otherwise, 𝑐𝑛𝑡 is incremented and the same process is applied on the next entry of the FIB.

This architecture was implemented for different FIB sizes on various FPGAs. Section 4.1

presents the synthesis results of FPGA implementations of Full-Serial using option A.

cnt

Valid

ALE

Memory

IP
(32 bits)

Prefix
(P bits)

NHI
(8 bits)

IP(0) Prefix(0) Port(0)

.

.

.

.

.

.

.

.

.

IP
(N-1)

Prefix
(N-1)

Port
(N-1)

30

Figure 3.2: Full-Serial, architecture of the comparator using option A

3.1.2 Option B

The maximum prefix size for an IPv4 addresses is 32, therefore, in option B, the prefix has 6 bits

(𝑃 = 6). For instance, a prefix size of 15 is stored as “001111”. While option A requires twenty-

six more bits to store the same prefix size: “11111111111111100000000000000000”.

The detailed architecture of the comparator for option B is illustrated in Figure 3.3. The

comparator performs an OR operation on certain portion of the IP address of the 𝑐𝑛𝑡𝑡ℎ entry and

the incoming IP address. Since the comparison is performed on the MSB of the IP addresses, the

ending index of each portion is equal to the length of the IP address minus one (31). The prefix

size of the 𝑐𝑛𝑡𝑡ℎentry determines the portion size of comparison at every cycle shown as

𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑝𝑟𝑒𝑓𝑖𝑥(𝑐𝑛𝑡)) in Figure 3.3. The comparator architecture and the format of storing the

FIB entries in both options shows that option B is much simpler than option A. The Full-Serial

architecture is implemented using both options. Section 4.1 presents the experimental results and

comparison of option A and B.

0

1

31

Figure 3.3: Full-Serial, architecture of the comparator using option B

3.2 Full-Parallel Architecture

Full-Parallel is the second proposed architecture for IP address lookup. It applies a parallel search

on all the entries of the FIB to perform the LPM algorithm. Figure 3.4 illustrates the Full-Parallel

architecture divided into three blocks: MB, PEB and NHIB. Let 𝑁 be the number of IP addresses

in the IPv4 FIB. The MB consists of 𝑁 sorted parallel cells and 𝑁 parallel comparators. Every

cell contains 46 bits: 32 bits of IP address, 6 bits of prefix and 8 bits of NHI. The cells are sorted

based on their prefix size in descending order. Therefore, the PEB finds the match with the

lowest address that determines the output of the LPM algorithm (𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎ). Next, the NHIB

selects the 8-bit NHI corresponding to the 𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎ. It consists of 8 parallel multiplexers of size

𝑁: 1 with 𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎas their selector. The 𝑖𝑡ℎ multiplexer receives 𝑖𝑡ℎ bit of the 𝑁 NHIs stored in

the 𝑁 parallel cells. The output of all 𝑁 parallel multiplexers determine the 𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ (see Figure

3.4).

The Full-Parallel architecture reduces the latency and increases the throughput of the IP address

lookup by performing a parallel search on all the entries. However, it requires high resource

utilization in terms of FF consumption, since all the FIB is stored in parallel cells. Section 4.2

describes the synthesis results of the FPGA implementation of the Full-Parallel architecture.

0

1

32

Figure 3.4: Full-Parallel architecture

3.3 IP-Split Architecture

IP-Split is the third proposed ALE architecture. As shown in Figure 3.5, it is divided into three

main blocks and its MB consists of two sub-blocks: Decoder Block (DB) and Comparator Block

(CB). In the following sub-sections, the behaviour of DB, CB, PEB and NHIB are explained in

detail.

3.3.1 Decoder Block

To perform a traditional parallel comparison with the 𝑁 entries of the FIB, 𝑁 comparators are

required (as shown in Figure 3.4, the Full-Parallel architecture). A large FIB may contain several

IP addresses that are identical in some segments. This would waste resources, since multiple

equivalent comparisons would be performed. To avoid such repetitive comparisons, the incoming

IP address is split into 𝑣 segments of 𝑘 bits. Each segment of the incoming IP is expanded to its

fully decoded form by an individual binary decoder. As shown in Figure 3.5, the DB consists of 𝑣

ALE

.

.

.

.

.

.

M
U

X
#

7

33

binary decoders of size 𝑘-to-2𝑘. The decoding method facilitates comparisons on an input

segment by simultaneously providing all possible comparisons results for that segment. Some

existing approaches on string matching employ a similar decoding method to improve

comparison efficiency for large sets [19], [21].

Figure 3.5: IP-Split architecture

3.3.2 Comparator Block

The CB compares the decoded incoming IP address with all IP addresses of the FIB using AND

operations. Each IP address of the FIB is hard-coded in a single AND operation. If one new entry

is added to the FIB, the corresponding AND operation must be synthesized and appended to CB.

Consequently, changing the FIB demands a re-synthesis of CB, while other blocks are fixed. A

partial reconfiguration only for the CB is favorable for such cases.

As shown in Figure 3.5, the CB consists of 𝑁 AND operations of different sizes. The values of

𝑚1 to 𝑚𝑁 determine the size of the first to 𝑁𝑡ℎ AND operations. Each input port of the AND

operation is connected to the output port of the decoder for the corresponding segment. For

instance, the 𝑖𝑡ℎ output port of the 𝑗𝑡ℎ decoder is connected to one of the input ports of the AND

operation for an IP address that has the value 𝑖 on its 𝑗𝑡ℎ segment. The number of input ports of

the 𝑙𝑡ℎ AND operation (𝐼𝑛𝑃𝑜𝑟𝑡𝑠𝑙) depends on the prefix size of the 𝑙𝑡ℎ entry of FIB (𝑝𝑟𝑒𝑓𝑖𝑥𝑙). If

𝑘 divides 𝑝𝑟𝑒𝑓𝑖𝑥𝑙, the 𝐼𝑛𝑃𝑜𝑟𝑡𝑠𝑙 is equal to
𝑝𝑟𝑒𝑓𝑖𝑥𝑙

𝑘
 . Otherwise, the number of input ports of the

𝑙𝑡ℎ AND operation for this case is calculated using the following equation:

ALE

34

𝐼𝑛𝑃𝑜𝑟𝑡𝑠𝑙 = ⌊
𝑝𝑟𝑒𝑓𝑖𝑥𝑙

𝑘
⌋ + 𝑝𝑟𝑒𝑓𝑖𝑥l 𝑚𝑜𝑑 𝑘, 𝑙 = 0,1, … , 𝑁 − 1, (3.1)

The first ⌊
𝑝𝑟𝑒𝑓𝑖𝑥𝑙

𝑘
⌋ MSB bits of the IP(31: 32 − 𝑝𝑟𝑒𝑓𝑖𝑥𝑙) are handled by the decoders while the

𝑝𝑟𝑒𝑓𝑖𝑥𝑙 𝑚𝑜𝑑 𝑘 ending bits will not completely fill the 𝑘 input ports of a decoder. Therefore, they

are directly connected to the corresponding AND logic. An example of the DB and CB is

illustrated in Figure 3.6.

Suppose that the FIB consists of two entries with the following values: 𝐼𝑃1 = ”43.180.0.0”,

𝐼𝑃2 = ”43.176.0.0”, 𝑃𝑟𝑒𝑓𝑖𝑥1 = 15, 𝑃𝑟𝑒𝑓𝑖𝑥2 = 12. Let 𝑣 and 𝑘 be 3 and 5, respectively. The

prefix of each entry determines the portion of each IP address that requires a comparison.

𝐼𝑃1(31: 17) and 𝐼𝑃2(31: 20) of the first and second entries are compared with the same portion

of the incoming IP address. The AND operations corresponding to the first and second entries are

calculated as follows. For the first entry, since 𝑘 divides 𝑃𝑟𝑒𝑓𝑖𝑥1, the corresponding AND

operation has
15

5
= 3 inputs. However, the second entry, which has prefix size of 12, requires a 4-

input AND operation. These four inputs are composed of the output ports of the first ⌊
12

5
⌋ =

2 decoders and the 12 𝑚𝑜𝑑 5 = 2 ending bits of the 𝐼𝑃2(31: 20).

Figure 3.6: Example on AND operations of the comparator block

To perform the LPM algorithm, the AND operations are sorted based on their prefix size in a

descending order. The result of 𝑙𝑡ℎAND operation is one bit that determines if there is a match of

,
,

35

the incoming IP address with the 𝑙𝑡ℎ entry of the FIB or not. The 1-bit outputs of the 𝑁 AND

operations are sent to the PEB for further processing.

3.3.3 Priority Encoder Block

The PEB receives the 𝑁-bit sorted comparison result of CB based on the prefix size. Therefore,

the match with the lowest address determines the output of the LPM algorithm. The PEB receives

an 𝑁-bit input and finds the address of the first occurred match i.e. 𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎ. It also determines

if there was at least one match found in the FIB using an output variable called 𝑣𝑎𝑙𝑖𝑑.

3.3.4 Next Hop Information Block

NHIB is the last block of the IP-Split architecture that determines the output of the ALE. NHIB

uses RAM to store the NHI corresponding to every entry of the FIB. The input 𝐴𝑑𝑑𝑟𝑀𝑎𝑡𝑐ℎ

determines the address of the 𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ inside the RAM.

3.4 IP-Split-Bucket Architecture

The IP-Split-Bucket is the final proposed ALE architecture that is an upgraded version of the IP-

Split architecture. It is a novel, scalable, high-performance and memory-less architecture for real-

time IP address lookup. The complete IP-Split-Bucket architecture, shown in Figure 3.7, consists

of six pipeline stages. It is divided into three main blocks while its MB consists of two sub-

blocks: DB and CB. The architecture of DB and NHIB are identical to these in the IP-Split

architecture. The functionalities of the remaining blocks are described in the sections 3.4.1 and

3.4.2.

3.4.1 Comparator Block

The IP-Split-Bucket architecture employs a partitioning scheme similar to certain existing work

[11]. Accordingly, the IP-Split-Bucket partitions the FIB into a predefined number of buckets

using a bucket identifier. A bucket identifier is a predetermined 𝑛-bit portion of the IP address

(𝐼𝑃(𝐵𝐼𝑠: 𝐵𝐼𝑒)). The 𝐵𝐼𝑠, 𝐵𝐼𝑒 indicate the starting and ending indexes of the bucket identifier,

respectively. All IP addresses with the same bucket identifier value belong to the same bucket,

and the total number of buckets is 2𝑛. The distribution of the IP addresses among the buckets

depends on the FIB and the bucket identifier. An effective bucket identifier should partition the

36

IP addresses uniformly, leading to a balanced distribution with ≅
𝑁

2𝑛
 IP addresses in each bucket.

As shown in Figure 3.7, the CB consists of 2𝑛 parallel components, called CBucket. Each

CBucket compares the decoded incoming IP address with the IP addresses of the corresponding

bucket using several AND operations. The architecture of every CBucket is identical to the

architecture of the CB in the IP-Split architecture.

Figure 3.7: IP-Split-Bucket architecture

3.4.2 Priority Encoder Block

The bucket identifier of the incoming IP address (𝐼𝑃𝑖𝑛(𝐵𝐼𝑠: 𝐵𝐼𝑒), in Figure 3.7) defines the

CBucket that contains useful comparison results. Therefore, a multiplexer is applied that passes

the outputs of the appropriate CBucket based on the value of 𝐼𝑃𝑖𝑛(𝐵𝐼𝑠: 𝐵𝐼𝑒). The multiplexer has

𝑚 × 2𝑛 inputs, where

𝑚 = 𝑀𝐴𝑋(𝑠𝑖𝑧𝑒(𝐶𝐵𝑢𝑐𝑘𝑒𝑡#𝑏)), 𝑏 = 0,1, … , 2𝑛 − 1, (3.2)

and 𝑠𝑖𝑧𝑒(𝐶𝐵𝑢𝑐𝑘𝑒𝑡#𝑏) is the total number of IP addresses that have been allocated to the 𝑏𝑡ℎ

bucket.

Next, a priority encoder receives all the comparison results of the appropriate CBucket. It passes

the local address (𝐴𝑑𝑑𝑟𝐿𝑜𝑐𝑎𝑙) of the match with longest prefix size in the appropriate CBucket.

To calculate the location of the match in the FIB, it is required to calculate the global match

address (𝐴𝑑𝑑𝑟𝐺𝑙𝑜𝑏𝑎𝑙) using the following equation:

ALE

M
U

X

+

37

 𝐴𝑑𝑑𝑟𝐺𝑙𝑜𝑏𝑎𝑙 = 𝐴𝑑𝑑𝑟𝐿𝑜𝑐𝑎𝑙 + 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝑏, 𝑏 = 0, … , 2𝑛 − 1, (3.3)

where the match occurred in the 𝐶𝐵𝑢𝑐𝑘𝑒𝑡#𝑏. The address calculation in (3.3) corresponds to

adding the local address of the match found by the priority encoder with the base address of the

appropriate bucket. Since a fixed-number of entries of the FIB are assigned to each bucket, the

base address of each bucket is a constant value stored in Base Address Table. The entries of the

Base Address Table are found with (3.4):

 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝑏 = ∑ 𝑠𝑖𝑧𝑒(𝐶𝐵𝑢𝑐𝑘𝑒𝑡#𝑏)𝑏−1
𝑖=0 , 𝑏 = 1,2, … , 2𝑛 − 1, (3.4)

where 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝑏 is the base address for the 𝑏𝑡ℎ bucket, and 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟0 = 0.

3.5 Update-Enabled IP-Split-Bucket Architecture

In this section, we enhance the IP-Split-Bucket architecture so that is supports FIB updates. This

architecture supports all three types of updates, additions (A), modifications (M) and deletions

(D), by the three parallel modules shown in Figure 3.8. The update module supports A and the

two modified IP-Split-Bucket modules support D and M. The update module is a small ALE with

a FIB size of 𝑆 containing all the new additions (A). The value of 𝑆 depends on the update rate

and the throughput of the system. The update module can be implemented using a TCAM or a

Trie data structure. The remaining two parallel modules are a modified version of IP-Split-Bucket

shown in Figure 3.9. The modified IP-Split-Bucket architecture consist of the three blocks MB,

PEB and NHIB along with an additional block PrefixB. PrefixB stores the prefixes of the FIB in

a memory. It passes the 𝑃𝑟𝑒𝑓𝑖𝑥𝑀𝑎𝑡𝑐ℎthat is the prefix of the match, to the output. The

𝑃𝑟𝑒𝑓𝑖𝑥𝑀𝑎𝑡𝑐ℎ is required in the global updatable IP-Split-Bucket to find the global match.

When an update type of D is requested for an entry, the prefix size and the NHI of the

corresponding entry are modified in the PrefixB and NHIB, respectively. Delete of an entry from

the FIB is similar to replacing the prefix and the NHI of the corresponding entry with the prefix

and the NHI of the previous longest prefix match found in the FIB. For instance, suppose 𝐼𝑃𝑖𝑛 =

 “00101011101101011010111010101” and the FIB has the following two entries: 𝐼𝑃1 =

”00101011101101000000000000000000”, 𝑃𝑟𝑒𝑓𝑖𝑥1 = 15, 𝑁𝐻𝐼1 = 8, 𝐼𝑃2 =

”00101011101100000000000000000000”, 𝑃𝑟𝑒𝑓𝑖𝑥2 = 12, and 𝑁𝐻𝐼2 = 19. Two matches are

found in the FIB that the first entry determines the LPM output. If a D of 𝐼𝑃1is requested in the

FIB, the LPM algorithm determines 𝐼𝑃2 as the match with the largest prefix size and returns the

38

NHI of 𝐼𝑃2 After a D of 𝐼𝑃1, the NHIB replaces the 𝑁𝐻𝐼1 by the 𝑁𝐻𝐼2 to return correct

𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ. Moreover, the PrefixB replaces 𝑃𝑟𝑒𝑓𝑖𝑥1 by 𝑃𝑟𝑒𝑓𝑖𝑥2 to return correct 𝑃𝑟𝑒𝑓𝑖𝑥𝑀𝑎𝑡𝑐ℎ.

This change of entries in NHIB and PrefixB is similar to a deletion of the first entry.

When an update type of M is requested for an entry, only the NHI of the corresponding entry is

modified in the NHIB. A modification requires only change of the corresponding NHI.

For a new FIB, all the data set dependent blocks require a re-synthesis, which is all blocks except

the PEB. However, an update does not require a re-synthesis and can be handled at its request

time. Two modified IP-Split-Bucket modules are applied to keep the system active during re-

implementation and maintain the high throughput of the architecture, where one is active at a

time. The update module determines the active modified IP-Split-Bucket architecture. When its

FIB size reaches its maximum value (𝑆), a new sorted FIB is created containing all the recent

updates (D, M and A). To perform an IP address lookup as shown in Figure 3.8, the incoming IP

address is sent to the update module and the active modified IP-Split-Bucket module in parallel.

IP address lookup is performed on both modules in parallel. Next, the arbiter module determines

the 𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ of the whole system. The arbiter module selects the 𝑁𝐻𝐼𝑖as the 𝑁𝐻𝐼𝑀𝑎𝑡𝑐ℎ, when

𝑃𝑟𝑒𝑓𝑖𝑥𝑖 is larger than 𝑃𝑟𝑒𝑓𝑖𝑥𝑗 .

39

Figure 3.8: Update-enabled IP-Split-Bucket architecture

Figure 3.9: Modified IP-Split-Bucket architecture

Update Module

Arbiter
module

PEB

PrefixB

NHIBMB

40

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION

This chapter presents the experimental results of the four proposed ALE architectures. The

proposed architectures are evaluated in terms of hardware complexity and performance. Section

4.1 describes the synthesis results of hardware implementation of the Full-Serial architecture on

FPGA. Section 4.2 provides the synthesis results of the Full-Parallel architecture on FPGA.

Sections 4.3 and 4.4 present the detailed synthesis results of the IP-Split and the IP-Split-Bucket

architectures on FPGA, respectively.

4.1 Full-Serial Architecture

The Full-Serial architecture was implemented for various sizes of real-world FIB extracted from

Routing Information Services (RIS) raw data [8]. It was synthesized on a Virtex-5 XC5VLX50T

FPGA using Xilinx ISE 13.4 synthesis tool. The Full-Serial architecture was implemented using

two options: A and B. Figure 4.1 and Figure 4.2 illustrate the hardware consumption of both

options in terms of LUTs and FFs, respectively. Option B has simpler architecture for its

comparator than option A (see sub-sections 3.1.1 and 3.1.2). Therefore, it requires lower

hardware consumption in terms of LUTs and FFs. Figure 4.3 shows a comparison of the clock

period of this architecture using options A and B. Option B achieves better performance than

option A.

In this architecture, all FIB is stored in on-chip Block RAM. Therefore, the determinative part of

the resource consumption is the memory usage rather than the logical resource usage (LUTs and

FFs). Consequently, the size of BRAMs in an FPGA will determine the maximum FIB size that

can be supported by the Full-Serial architecture. Table 4.1 shows an estimation of the maximum

size of FIB supported by various FPGAs using option A and option B. The last column of Table

4.1 shows the cost of each FPGA.

4.2 Full-Parallel Architecture

The Full-Parallel architecture was implemented on a Virtex-5 XC5VLX50T FPGA for a real-

world FIB extracted from RIS raw data [8]. Table 4.2 illustrates the synthesis results of the Full-

Parallel architecture for different FIB sizes up to 4 k using the Xilinx ISE 13.4 synthesis tool. The

41

results show that the number of LUTs and FFs increases linearly with the size of the FIB,

whereas the clock period shows a sub-linear increase.

Figure 4.1: Comparison of option A and option B in terms LUTs utilization

Figure 4.2: Comparison of option A and option B in terms FFs utilization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

50

100

150

200

250

300

350

400

450

Number of Entries

N
u

m
b

e
r

o
f
L

U
T

s

A

B

B
A

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

20

40

60

80

100

120

Number of Entries

N
u

m
b

e
r

o
f
F

lip
 F

lo
p

s

A

B

B
A

42

Figure 4.3: Comparison of option A and option B in terms of clock period

Table 4.1: Maximum FIB size supported for Full-Serial with FPGAs

FPGA
Block RAM

(Kb)

Max N Supported

(Option A)

Max N

Supported

(Option B)

Unit Price

($CAD)

Virtex 5 : XC5VLX50T 2160 30 k 46 k 750

Virtex 5 :

XC5VFX200T
16416 228 k 356 k 8500

Kintex 7 : XC7K480T 34380 477 k 747 k 4750

Virtex 7 :

XC7VX1140T
67680 940 k 1471 k 23000

Kintex UltraScale :

KU115
75900 1054 k 1650 k unavailable

Virtex UltraScale :

VU190
132900 1845 k 2889 k unavailable

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

2

3

4

5

6

7

8

Number of Entries

C
lo

c
k
 P

e
ri
o

d
 (

n
s
)

A

B

B
A

43

In the Full-Parallel architecture, all FIB entries (known as 𝑐𝑒𝑙𝑙𝑠 in section 3.2) are stored in the

logical resources of the FPGA. Moreover, there are 𝑁 parallel comparators in the MB

implemented in logical resources. Therefore, the number of LUTs in an FPGA determines the

maximum supported size of the FIB for the Full-Parallel architecture.

Table 4.3 lists the largest Xilinx FPGAs of different families with their number of available

LUTs and their price. In this table, an estimation on the maximum supported size of the FIB is

provided for each FPGA.

4.3 IP-Split Architecture

The complexity of the IP-Split architecture is dependent on the predefined values of its design

parameters shown in Figure 3.5: 𝑣, 𝑘, (𝑚1: 𝑚𝑁), 𝑁. Therefore, it is required to find optimal

values for the design parameters. The value of (𝑚1: 𝑚𝑁) and 𝑁 is dependent on the FIB, which is

data set dependent. The value of (𝑣, 𝑘) in the DB have an impact on the complexity of the CB.

Apart from (𝑣, 𝑘) values, the prefix distribution of the FIB determines the size of the AND

operations in the CB. Since the objective is to find the most efficient design parameter values for

the IP-Split architecture, we conducted a design space exploration for (𝑣, 𝑘) to estimate the

complexity of the CB for an existing FIB. Figure 4.4 illustrates the prefix distribution of an

existing IPv4 FIB extracted from RIS raw data that corresponds to the normal prefix distribution

of the existing FIBs [8].

Table 4.2: Full-Parallel synthesis results for different sizes of FIB on Virtex-5

N LUTs FFs Clock Period LUTs/N

31 0.29 k 0.10 k 2.7 9.2

128 1 k 0.19 k 2.8 9.1

1 k 8 k 1 k 2.8 8.3

2 k 16 k 2 k 2.9 8.0

4 k 34 k 4 k 2.9 8.3

44

Table 4.3: Maximum FIB size supported for Full-Parallel with FPGAs

FPGA LUTs Max N Supported Unit Price ($CAD)

Virtex 5 : XC5VLX50T 28 k 3 k 0.75 k

Virtex 5 : XC5VLX330T 207 k 23 k 18 k

Kintex 7 : XC7K480T 298 k 33 k 4 k

Kintex UltraScale : KU115 663 k 73 k unavailable

Virtex 7 : XC7VX1140T 712 k 79 k 23 k

Virtex 7 : XC7V2000T 1 M 135 k 25 k

Virtex UltraScale : VU440 2 M 281 k unavailable

Figure 4.4: Prefix distribution of a real-world IPv4 FIB [8]

We propose a 2-step estimation process on the complexity of the CB using the prefix distribution

shown in Figure 4.4 and a specific value of (𝑣, 𝑘). In the first step, we evaluate the size of all

AND operations using Equation 3.1. In the second step, the number of consumed LUTs for every

AND operation is estimated. It is assumed in the second step of estimation that recent FPGA

families with 6-input LUTs are used. For example, Table 4.4 shows an estimation of the

complexity of the CB when 𝑘 = 7 and 𝑣 = 4. The first and the second columns show the

prefix size and the repetition of that prefix size in the FIB. The third column shows the size of

every AND operation calculated by Equation 3.1. The third column stores the total number of

0

10

20

30

40

50

60

0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

P
er

ce
n

ta
ge

Prefix Size

45

consumed LUTs for all IP addresses with that specific prefix size. The calculation of the values

stored in the fifth row of Table 4.4 is described below:

 The prefix size is equal to 19.

 The repetition is the number of IP addresses with prefix size equal to 19. It is equal to 27033

as shown in Figure 4.4.

 The size of AND operation for an IP address with prefix size of 19 is equal to (⌊
19

7
⌋ +

19 mod 7 = 7) according to Equation 3.1.

 The number of consumed LUTs is equal to (27033 × 2 = 54066), since every AND

operation of 7-bits requires two 6-input LUTs.

The total number of consumed LUTs for design parameters 𝑘 = 7 and 𝑣 = 4 is equal to the

summation of the last column of Table 4.4.

We conducted a design space exploration on the decoder size by applying the 2-step estimation

process. We proposed 32 test cases that estimate the LUT consumption of the CB for different

size of decoders as shown in Figure 4.5. For every test case, the size of decoders (𝑘) is

incremented by one and the value of v for is equal to ⌊
32

𝑘
⌋. The estimation results illustrate that

the optimal values for (𝑣, 𝑘) among the test cases are (3, 10) that lead to the lowest LUT

consumption.

As shown in Figure 4.4, most of the IP addresses in a FIB have prefix size of 24. For such prefix

size, when (𝑣, 𝑘) is (3, 10), we require a 6-input AND operation (⌊
24

10
⌋ + 24mod10 = 6).

However, we require a 3-input AND operation (⌊
24

8
⌋ = 3) for (4, 8). Therefore, the choice (4, 8)

results in a simpler AND operation compared to (3, 10). Moreover, the estimation results shown

in Figure 4.5 does not show a significant difference in their LUT consumption. Therefore, we

have applied four decoders of 8-to-28 in all our experiments.

The IP-Split architecture was synthesized on a Virtex-5 xcvlc50t FPGA with Synplify 15.09

synthesis tool for various sizes of real-world FIBs extracted from the RIS raw data [8]. The

hardware description of the IP-Split architecture is more complex compared to the previous ones,

and thus, the Synplify tool is used instead of Xilinx in this section to save the synthesis time for

46

large FIB size. To evaluate the complexity of every block in terms of resource usage and

performance, the synthesis results of every block is presented in following sections.

Table 4.4: Estimation of the number of used LUTs while applying 4 of 7-to-27 decoders

Prefix Size Repetition Size of AND operation LUTs

15 1792 3 1792

16 13080 4 13080

17 7817 5 7817

18 13110 6 13110

19 27033 7 54066

20 38278 8 76556

21 41172 3 41172

22 63423 4 63423

23 55974 5 55974

24 313482 6 313482

25 1428 7 2856

26 1221 8 2442

27 765 9 1530

28 199 4 199

29 268 5 268

30 295 6 295

31 29 7 58

32 527 8 1054

47

Figure 4.5: Design space exploration for the size of decoders

4.3.1 Synthesis Results of the Decoder Block

This section presents the synthesis results of the DB. The DB consists of four 8-to-256 decoders.

Table 4.5 illustrates the hardware complexity of the DB in terms of LUT and FF consumption.

The last column of Table 4.5 shows that this block supports a clock frequency of 1191 MHz.

Since the complexity of the DB is not dependent on the FIB size, 𝑁 is not a metric in the

presented results. Therefore, the IP-Split architecture requires a small, fixed-size DB regardless

of the FIB size.

Table 4.5: Synthesis results of the DB

DB LUTs FFs Clock Period (ns)

4 Decoders of 8-to-256 1044 1024 0.839

0

500000

1000000

1500000

2000000

2500000

3000000

(1
,3

2
)

(1
,3

1
)

(1
,3

0
)

(1
,2

9
)

(1
,2

8
)

(1
,2

7
)

(1
,2

6
)

(1
,2

5
)

(1
,2

4
)

(1
,2

3
)

(1
,2

2
)

(1
,2

1
)

(1
,2

0
)

(1
,1

9
)

(1
,1

8
)

(1
,1

7
)

(2
,1

6
)

(2
,1

5
)

(2
,1

4
)

(2
,1

3
)

(2
,1

2
)

(2
,1

1
)

(3
,1

0
)

(3
,9

)

(4
,8

)

(4
,7

)

(5
,6

)

(6
,5

)

(8
,4

)

(1
0

,3
)

(1
6

,2
)

(3
2

,1
)

N
u

m
b

er
 o

f
LU

Ts
 u

se
d

(v,k)

Estimated number of LUTs for CB

48

4.3.2 Synthesis Results of the Comparator Block

This section presents the synthesis results of the CB for different FIB sizes. Figure 4.6 shows the

number of consumed LUTs and FFs of this architecture. Based on the theoretical analysis of the

CB growth, it is estimated that a FIB with around 500 k entries requires 652 k FFs and 586 k

LUTs in its CB. Figure 4.7 illustrates the clock period of the DB that has a near-linear increase

with the size of the FIB.

Figure 4.6: Hardware resource usage of the comparator block

Figure 4.7: Clock period of the comparator block

2029

4174

8259

16523

3317

5350

10443

19608

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

FIB Size (N)

LUTs

FFs

0.6810.6690.686

0.948
0.889 0.902

0.727
0.777

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000

C
lo

ck
 P

er
io

d
 (

n
s)

FIB Size(N)

49

4.3.3 Synthesis Results of Priority Encoder Block

This section presents the synthesis results of the PEB for various FIB sizes. The priority encoder

has 𝑁 inputs where 𝑁 is equal to the number of FIB entries. Therefore, the size of the PEB

increases linearly with the size of the FIB. Figure 4.8 illustrates the synthesis results of the PEB

in terms of LUT and FF consumption. Based on the theoretical analysis of the PEB growth, the

PEB consumes 582 k FFs and 1 M LUTs for a FIB size around 500 k. Figure 4.9 shows the clock

period of the PEB for different FIB sizes. PEB is the bottleneck of IP-Split architecture in terms

of clock period. According to the synthesis results, it is necessary to minimize the size of the PEB

for large FIBs, which is the main goal of the IP-Split-Bucket architecture.

Figure 4.8: Hardware resource usage of the priority encoder block

Figure 4.9: Clock period of the priority encoder block

140385
862

1752

3721

7033

8045

143273 531
1045

2071

3634
4121

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000 4000 5000

FIB size (N)

LUTs

FFs

2.6582.275

4.375
5.012

8.933

15.127

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000

C
lo

ck
 P

er
io

d
 (

n
s)

FIB Size (N)

50

4.3.4 Synthesis Results of the NHIB

The NHIB is implemented in a BRAM of size 𝑁 × 8 bits containing 8-bit output ports.

Therefore, a FIB with around 500 k entries requires an FPGA with ability to support 4 Mb block

RAMs. The NHIB consumes neither LUTs nor FFs.

4.3.5 Discussion

The IP-Split architecture provides some improvements compared to previously proposed

architectures. It proposes deterministic latency with high performance, which is supported by the

Full-Serial architecture. Furthermore, the IP-Split architecture avoids repetitive redundant

comparisons handled in the Full-Serial and the Full-Parallel architectures. However, some

drawbacks still exist in the IP-Split architecture in the matter of area consumption for large FIBs.

It is required to minimize the resource usage of the IP-Split architecture to be able to fit the whole

architecture inside the existing FPGA. Therefore, it is required to minimize the size of each

block:

1. The DB requires no modification or change, since it is static for every FIB size and has

negligible resource usage compared to the other blocks.

2. The CB is a large block containing simple AND operations that its size is dependent on the

FIB size.

3. The PEB is the bottleneck of the design for large FIBs. Finding the match with largest prefix

size among 𝑁 inputs is the main challenge of the IP-Split architecture. For instance, to

support a FIB with 500 k entries, it is required to synthesize a priority encoder with 500 k

inputs.

We need to minimize the LUTs and FFs usage of each block to be able to fit the whole design

inside an existing FPGA. The PEB is the main challenging block among all the blocks. It is the

bottleneck of the design in terms of clock period. Therefore, to respect the network constraints in

terms of throughput we need to minimize the clock period of the PEB. For that matter, the IP-

Split-Bucket architecture is proposed. It minimizes the size of the problem by dividing the whole

FIB into buckets based on the value of the certain portion of the IP addresses. Accordingly, the

CB consists of several buckets where only one bucket contains the viable match result at a time

51

for each incoming IP address. Therefore, the size of the PEB will decrease from the whole FIB

size to the size of the maximum bucket.

4.4 IP-Split-Bucket Architecture

In this section, we used a different FPGA for all IP-Split-Bucket experiments compared to the

previously proposed architectures. A Virtex-7 FPGA was employed, due to its higher

performance and larger capacity compared to the Virtex-5 family. For large 𝑁 FIBs implemented

on the IP-Split-Bucket architecture, the Synplify optimization tool leads to an internal error. The

largest FIB size supported with the Synplify synthesis tool was 16 k for the IP-Split-Bucket

architecture. Therefore, we used the Xilinx ISE synthesis tool for the IP-Split-Bucket

experiments. The target IPv4 FIB used for all experiments was extracted from RIS raw data [8].

Four set of experiments were performed for the IP-Split-Bucket architecture. In the first set of

experiments described in section 4.4.1, the 6-level pipelined architecture of IP-Split-Bucket was

implemented for different FIB sizes. In the second set of experiments presented in section 4.4.2,

the IP-Split-Bucket architecture is compared with some existing trie-based and CAM-emulation

approaches. In the two remaining set of experiments, the objective is to find an efficient set of

values for the design parameters (𝐵𝐼𝑠, 𝑛, 𝑣, and 𝑘) of the IP-Split-Bucket architecture, since their

values affect its complexity. In the third set of experiments described in section 4.3.3, efficient

values for 𝐵𝐼𝑠 and 𝑛 are selected by evaluating the resource utilization of the design for various

values of 𝑁, 𝐵𝐼𝑠 and 𝑛. In the fourth set of experiments presented in section 4.4.4, a decoder

generator is proposed to find efficient values the remaining design parameters. Therefore, it

determines a series of decoders in the DB using the values selected in section 4.4.3 for 𝐵𝐼𝑠 and 𝑛.

4.4.1 Synthesis Results of the IP-Split-Bucket Architecture

In the first set of experiments, the hardware area and the performance achieved with the IP-Split-

Bucket architecture were evaluated using different IPv4 FIB sizes (𝑁). In order to achieve a

uniform distribution of IP addresses in the buckets, the bucket identifier was chosen based on the

approach proposed by Zheng et al. [11]. In this experiment, we chose 𝑛 = 8 that partitions the

FIB into 256 buckets. Using Zheng’s approach for 256 buckets, bits 9 to 16 were found to be the

most appropriate bucket identifier (𝐵𝐼𝑠 = 9 and 𝐵𝐼𝑒 = 16). Figure 4.10 shows the distribution

of IP addresses when Zheng’s approach is applied for 256 buckets (𝑛 = 8) on a FIB size of

52

581851 extracted from RIS raw data [8]. In Figure 4.10, the x-axis determines the ID group

number of each bucket and the y-axis determines the number of IP addresses stored in the

corresponding bucket.

Figure 4.10: IP address distribution into 256 buckets (BIs = 9, 𝐵𝐼𝑒=16)

The remaining design parameters have the following values: 𝑤 = 32, 𝑘 = 8 and 𝑣 = 4. Since

𝑘 = 8 and 𝑣 = 4, the second chosen segment is equivalent to the bucket identifier, the second

decoder in DB is redundant and can be removed from the design. Indeed, the target IP addresses

are distributed among the buckets based on the bucket identifier, i.e., the second chosen segment

in this case. Hence, the comparisons of the second segment (bits 9 to 16) are implicitly performed

by the described partitioning scheme.

The hardware area consumption of the IP-Split-Bucket architecture depends on the target FIB

size. Therefore, the total available resources in the target FPGA determine the largest supported

FIB size. Table 4.6 shows the area consumption expressed in terms of the number of LUTs and

FFs for various FIB sizes. The number of consumed LUTs increases almost linearly with the

problem size, whereas the number of consumed FFs shows a sub-linear increase. The proposed

architecture was evaluated using a target FIB of up to 524 k entries. The results show that

implementing the largest FIB on a XC7V2200T FPGA consumes 23% and 22% of the available

LUTs and FFs, respectively. Since the 6-level pipelined IP-Split-Bucket architecture provides

0

500

1000

1500

2000

2500

3000

3500

4000

#0 #9

#1
8

#2
7

#3
6

#4
5

#5
4

#6
3

#7
2

#8
1

#9
0

#9
9

#1
0

8

#1
1

7

#1
2

6

#1
3

5

#1
4

4

#1
5

3

#1
6

2

#1
7

1

#1
8

0

#1
8

9

#1
9

8

#2
0

7

#2
1

6

#2
2

5

#2
3

4

#2
4

3

#2
5

2

o

f
en

tr
ie

s

ID Group

53

one result every clock cycle, the frequency column, shown in Table 4.6, can be considered as the

throughput of the architecture.

Table 4.6: Synthesis results of IP-Split-Bucket architecture for different FIB sizes on Virtex-7

N m
Frequency

(MHz)

Number of

LUTs

Number of

FFs

Latency

(ns)

4 k 40 246 6.6 k 5 k 24.3

8 k 59 245 12 k 9 k 24.4

16 k 115 189 23.7 k 18 k 31.6

18 k 126 184 25.9 k 19.7 k 32.5

20 k 143 181 28.6 k 21.7 k 33.0

32.7 k 220 159 46.8 k 35 k 37.6

65.5 k 427 136 93 k 69 k 43.8

90 k 591 120 102 k 69.8 k 49.7

131 k 846 119 115.9 k 70 k 50.1

524 k 3316 103 282.3 k 549.7 k 57.9

4.4.2 Comparison of IP-Split-Bucket Architecture and Existing Work

This section compares some existing trie-based and CAM-emulation approaches with the IP-

Split-Bucket architecture. Table 4.7 demonstrates the FPGA synthesis results of various designs

using CAM-emulation and trie-based techniques.

We compare the IP-Split-Bucket architecture with two existing memory-less CAM-emulation

approaches [21], [29]. Xilinx developed an FPGA-based TCAM core that can be configured to

use either SRLs or RAMs [29]. Since IP-Split-Bucket avoids using memory resources, we

compared it with the 32-bit wide SRL-based TCAM core as shown in the sixth column of Table

4.7. The IP-Split-Bucket architecture was evaluated by implementing test cases of comparable

sizes on XC5VLX220 FPGAs. The results show that, for a FIB with 1024 IP prefixes, the

proposed architecture consumes 83.4% fewer LUTs and offers 3.5× higher throughput compared

to the Xilinx TCAM core [29]. Clark and Schimmel [21] evaluated their design using the largest

54

test cases among BCAM-emulation works. Therefore, we implemented a comparable table size

of 18 k on the IP-Split-Bucket. Table 4.7 shows that the IP-Split-Bucket consumes 39% and 64%

fewer LUTs and FFs, respectively.

Three Trie-based approaches are included in Table 4.7 [15], [16], [17]. Matoušek’s [16] paper

presented the work that is most recent and most comparable work to ours. We implemented an

equivalent table size of 442.7 k on XC6VSX475T FPGA, using different tested FIBs. The results

show that while the IP-Split-Bucket architecture does not use memory resources, Matoušek’s

approach consumes 7.7 Mb of internal memory. On the other hand, Matoušek’s approach

requires 85% and 90.5% fewer LUTs and FFs. The IP-Split-Bucket architecture achieves 90.8%

lower latency compared to Matoušek et al [16] while having 54% lower throughput. Yang et al.

[15] presented a memory-based Trie-based approach that supports a very large FIB (9.5 M

entries). Although, Yang et al.’s approach [15] achieves better performance, it consumes a large

amount of internal and external memories. Yang et al. have not reported the size of the utilized

external memories, whereas the IP-Split-Bucket architecture avoids using any memory resources

(~0 Kb).

4.4.3 The Size and the Starting Bit Selection for the Bucket Identifier

Two methods are proposed to find efficient values for 𝐵𝐼𝑠 and 𝑛 for a FIB size of 𝑁 to minimize

the complexity of the IP-Split-Bucket architecture. In the first method, we estimate the IP-Split-

Bucket complexity for various values of 𝑛 and 𝑁 and fixed size for 𝐵𝐼𝑠. In the second method, an

estimation function is proposed that finds efficient values of 𝐵𝐼𝑠, 𝑛 for a fixed size of 𝑁.

In the first method, the resource utilization was characterized for different values of 𝑛 using a

fixed value of 𝐵𝐼𝑠. To improve efficiency, all buckets should contain approximately the same

number of entries of the FIB. Therefore, it is required to choose a fixed value of 𝐵𝐼𝑠 for this

method that leads to equalizing the bucket sizes. In order to achieve a uniform distribution of IP

addresses in the buckets, the bucket identifier was chosen based on the approach proposed by

Zheng et al. [11]. In [11], consecutive bits of 10 to 13 are chosen for the bucket identifier that

leads to a normal distribution of IP addresses into 16 groups. The authors tested this bucket

identifier for multiple real-world FIBs that leads to a uniform group division. Therefore, using

Zheng’s approach, we apply the fixed value of 𝐵𝐼𝑠 = 10.

55

Table 4.7: Detailed comparison of existing work with IP-Split-Bucket

 Metrics

Approaches

Device

of

Patterns

× # of

char

LUTs FFs
Memory

(Kb)

Frequency

(MHz)

Throughput

(MLPS)

Latency

(ns)
Technique

[17]

2006

Virtex-2

XCVP100

602

× 20.4
6 k 6 k ~ 0 216 216 37 Trie-based

[15]

2011

Virtex-6

SX475T

9.5 M

× 32
7 k 22 k

28,044

(BRAM)

+ 4

External

SRAMs

156 312 13 Trie-based

[16]

2013

Virtex-6

XC6VSX475T

442,748 ×

32
88 k 44 k 7780 127 254 472 Trie-based

[21]

2004
Virtex2-8000

17,537×

32
55 k 55 k ~ 0 219 233 146

BCAM-

emulation

[29]

TCAM core

Virtex-5

XC5VLX220

1024

× 32
13 k 63 ~ 0 80 80 12

TCAM-

emulation

IP-Split-

Bucket

Virtex-6

XC6VSX475T

442,747 ×

32
593 k 464 k ~ 0 116 116 43

TCAM-

emulation

Virtex-5

XC5VLX220
1024 × 32 2.2 k 1.9 k ~ 0 362 362 13.5

Virtex-7

XC7V2000T

1024 × 32 2.3 k 1.9 k ~ 0 415 415 12

18,001 ×

32
22 k 19 k ~ 0 184 184 27

524,287 ×

32
282 k 550 k ~ 0 103 103 48

There are nine test cases with different values of 𝑛 changing in the range of 2 to 10. Changing the

value of 𝑛 does not significantly affect the hardware complexity of the DB, CB and NHIB blocks.

The PEB is the main block that varies by changing 𝑛. The PEB consists of a multiplexer, a

priority encoder and an adder. The adder combines two values of length 𝑙𝑜𝑔2𝑚 bits. Since

increasing 𝑛 leads to a negligible growth of 𝑚, ignoring variations in resource utilization of the

adder in the final estimation does not significantly change the result. Hence, the hardware

complexity is estimated by summing up the LUT usage of the multiplexer and the priority

56

encoder for each tested value of 𝑛. The complexity of the multiplexer is also dependent on the

value 𝑚, while the complexity of the priority encoder is only dependent on 𝑚. Therefore, we

evaluate the maximum bucket size (𝑚) for every test case and FIB size, shown in Table 4.8.

Figure 4.11.a and Figure 4.11.b show the LUT consumption of the multiplexer and priority

encoder for the nine test cases, respectively. According to Figure 4.11.a, the multiplexer has a

near-linear increase in the LUT usage as 𝑛 increases. For a given number of table entries 𝑁,

increasing the number of buckets 2𝑛 means that the buckets will be smaller, hence smaller 𝑚.

Since the priority encoder size only depends on the value of 𝑚, a smaller 𝑚 leads to a smaller

priority encoder. Figure 4.11.b shows that when 𝑛 increases, the resource utilization of the

priority encoder is reduced. Figure 4.12 compares the final hardware complexity for different

values of 𝑛 and 𝑁 for the multiplexer and the priority encoder. These results show that changing

the number of buckets from 16 (𝑛 = 4) to 128 (𝑛 = 7) has a limited impact on the overall LUT

consumption. Among the test cases, the optimal choice for the bucket identifier size is 𝑛 = 5,

which minimizes resource utilization for almost all FIB sizes.

Table 4.8: Maximum bucket size (𝑚) for variable test cases with variable FIB sizes

FIB Sizes

Case

#1

Case

#2

Case

#3

Case

#4

Case

#5

Case

#6

Case

#7

Case

#8

Case

#9

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

N = 65536 17429 8741 4558 2504 1325 703 427 225 149

N = 32768 8729 4404 2282 1273 679 358 220 120 79

N = 18001 4748 2402 1281 705 379 199 126 69 45

N = 16384 4304 2178 1157 639 348 183 115 63 43

N = 8192 2123 1085 573 316 166 96 59 34 26

N = 4096 1083 544 306 165 97 53 40 19 15

In the second method, we vary the position of the bucket identifier starting index (𝐵𝐼𝑠) and for

each one, we measure the complexity for various values of 𝑛. The CB and PEB blocks are the

main parts of the architecture that vary when changing 𝐵𝐼𝑠 and 𝑛. Hence, the resource utilization

57

is estimated by summing up the LUT consumption of the CB and PEB blocks for each tested

value of 𝐵𝐼𝑠 and 𝑛 using a moderate size FIB (16 k).

We propose two steps of estimation for the CB and PEB. The first step estimates the complexity

of the CB. The CB consists of 𝑁 + 𝐸 number of AND operations, where 𝑁 is the FIB size and 𝐸

is number of expansions in the FIB. Every IP address with a prefix size (𝑝𝑟𝑒𝑓𝑖𝑥) smaller than the

ending index of a bucket identifier (𝐵𝐼𝑒) is expanded into 𝐸 IP addresses with prefix size of 𝐵𝐼𝑒.

The number of expansions (𝐸) is calculated by 2𝐵𝐼𝑒− 𝑝𝑟𝑒𝑓𝑖𝑥. For instance, suppose 𝐵𝐼𝑠 = 10,

𝐵𝐼𝑒 = 15, 𝐼𝑃1 = ”234.84.212.153” and 𝑝𝑟𝑒𝑓𝑖𝑥1 = 13. In such case, 𝐼𝑃1 requires an expansion

into 215− 13=4 IP addresses with prefix size of 15. According to the example, it is stated that the

value of the 𝐵𝐼𝑒 determines 𝐸 in a FIB. Since 𝐵𝐼𝑒 is equal to 𝐵𝐼𝑠 + 𝑛 − 1, a prefix_expansion

function is proposed that determines the value of 𝐸 required for a FIB using the values of 𝐵𝐼𝑠

and 𝑛. Therefore, the complexity of the CB is estimated by adding the value of 𝐸 and 𝑁. The

second step estimates the complexity of the PEB that consists of an 𝑚 × 2𝑛multiplexer and an

𝑚–input priority encoder. The value of 𝑚 is determined after an expansion and bucket division of

the FIB for specific 𝐵𝐼𝑠 and 𝑛. Therefore, the summation of the LUT consumption of the

multiplexer and priority encoder determines the complexity of the PEB.

The estimation function sweeps the value of 𝐵𝐼𝑠 and 𝑛 in the ranges of (1:23) and (2:11),

respectively and estimates the total LUT consumption of the PEB and CB. Next, the design

parameters with the lowest value of total LUT consumption are selected as the optimal values.

Figure 4.13 shows the design space exploration on 𝐵𝐼𝑠 and 𝑛 for the moderate FIB size of 16383.

The optimal value (𝑚𝑖𝑛𝐶𝑜𝑠𝑡) occurs for a 𝐵𝐼𝑠 = 9 and 𝑛 = 7.

Figure 4.14 is a zoomed-in section of Figure 4.13. In the reported synthesis results of the IP-

Split-Bucket architecture in section 4.4.1, we applied the values of 9 and 8 for 𝐵𝐼𝑠 and 𝑛,

respectively. Figure 4.14 demonstrates there is not a significant difference in the total estimated

LUT consumption for a design with 𝐵𝐼𝑠 = 9 and 𝑛 = 8 compared to the optimal point of 𝐵𝐼𝑠 = 9

and 𝑛 = 7.

58

Figure 4.11: LUT consumption of multiplexer (a) and priority encoder (b) of the PEB

Figure 4.12: PEB resource utilization estimation as a function of 𝑛 and 𝑚

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
x 10

4

of chosen bits in IP addresses (n)

#
 o

f
C

o
n

s
u

m
e

d
 L

U
T

s

(a)

N=65536

N=32768

N=18001

N=16384

N=8192

N=4096

2 3 4 5 6 7 8 9 10
0

1

2

3

4
x 10

4

of chosen bits in IP addresses (n)

#
 o

f
C

o
n

s
u

m
e

d
 L

U
T

s

(b)

N=65536

N=32768

N=18001

N=16384

N=8192

N=4096

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
x 10

4

of chosen bits in IP addresses (n)

#
 o

f
C

o
n

s
u

m
e

d
 L

U
T

s

N=65536

N=32768

N=18001

N=16384

N=8192

N=4096

59

Figure 4.13: A design space exploration on 𝐵𝐼𝑠 and 𝑛

Figure 4.14: A zoomed-in section of the design space exploration on 𝐵𝐼𝑠 and 𝑛

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8
x 10

5

Starting Index of the Bucket Identifier

T
o
ta

l
E

s
ti
m

a
te

d
 L

U
T

 C
o
n
s
u
m

p
ti
o
n

n=2

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=10

n=11

minCost

4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

x 10
4

Starting Index of the Bucket Identifier

T
o
ta

l
E

s
ti
m

a
te

d
 L

U
T

 C
o
n
s
u
m

p
ti
o
n

n=2

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=10

n=11

minCost

60

4.4.4 Decoders Selection

Using the optimal values of 𝐵𝐼𝑠 and 𝑛 obtained in section 4.4.3, we searched for a series of

decoders for the IP-Split-Bucket architecture that lead to the lowest total LUT consumption. A

random decoder generator is proposed that generates an array (𝑑𝑒𝑐) containing a random number

of decoders with random sizes. In the random decoder generator, it is assumed that the

summation of the decoder sizes (𝑆𝑈𝑀(𝑑𝑒𝑐)) and the bucket identifier size (𝑛) should be equal

to the size of the IPv4 address (32). An array (𝑟𝑎𝑛𝑑) with 16 entries and for which each entry has

a random value between 2 to 10 is generated. The first 𝑑 entries of the generated array construct

the 𝑑𝑒𝑐, where the summation of the 𝑑 entries (𝑆𝑈𝑀(𝑟𝑎𝑛𝑑(1: 𝑑))) is equal to 32 − 𝑛. If the

summation of the first 𝑑 entries is more than 32 − 𝑛, 𝑑 − 1 first entries and a value of 32 − 𝑛 −

(𝑆𝑈𝑀(𝑟𝑎𝑛𝑑(1: 𝑑 − 1))) will generate the 𝑑𝑒𝑐. Next, an evaluation function is proposed that

calculates the total LUT consumption of the IP-Split-Bucket architecture with the following

design parameters: 𝐵𝐼𝑠, 𝑛 and 𝑑𝑒𝑐. The evaluation function determines its design parameters by

the result of the estimation function (𝐵𝐼𝑠, 𝑛) and the random decoder generator (𝑑𝑒𝑐). Later, this

function is called iteratively and an efficient 𝑑𝑒𝑐 is selected among the iterations that leads to the

lowest total LUT consumption. Figure 4.15 illustrates the results given by the evaluation function

for 3000 iterations. Each point, in this figure, demonstrates the estimated LUT consumption of

the best solution found in the corresponding number of random tests. After 3000 iterations, the

most efficient design parameters found by the evaluation function for 𝑁 = 16383 are: 𝐵𝐼𝑠 = 9 ,

𝑛 = 7 and 𝑑𝑒𝑐 = [5 4 4 4 3 2 3]. For this design, the evaluation function estimates the LUT

consumption of 22.5 k where 𝐸 = 323 and 𝑚 = 197.

61

Figure 4.15: Evaluation function results for 3000 iterations

0 500 1000 1500 2000 2500 3000
5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
x 10

4

of Random Test Cases

T
o
ta

l
E

s
ti
m

a
te

d
 L

U
T

 C
o
n
s
u
m

p
ti
o
n

62

CHAPTER 5 CONCLUSION AND FUTURE WORK

Due to ever-increasing number of IP addresses in existing FIBs, there is a high demand for fast,

high performance ALEs supporting large FIBs. In this thesis, four ALE architectures were

proposed and implemented in FPGA: The Full-Serial, the Full-Parallel, the IP-Split, the IP-Split-

Bucket and a fifth on the Update-enabled IP-Split-Bucket was proposed. The drawbacks of every

proposed architecture are avoided in the subsequent one.

The Full-Serial architecture performs a serial search on the FIB entries stored in the memory

using one comparator. The comparator is implemented using two different architectures: option A

and option B. The lookup time is proportional to 𝑁 2⁄ in the Full-Serial architecture. The Full-

Serial architecture has some drawbacks in terms of memory consumption for large FIBs.

Moreover, it is a slow architecture for which the lookup time is data set dependent.

These drawbacks are avoided in the second proposed architecture. The Full-Parallel architecture

performs a parallel search on the FIB entries using multiple parallel comparators instead of one

comparator. It has a constant latency and throughput for any FIB regardless of the incoming IP

address. Since all FIB entries are stored into the logical resources of the FPGA, it has a high

complexity in terms of LUT and FF consumption. In a large FIB with thousands of IP addresses,

a parallel comparison on the FIB may contain several redundant comparisons on equivalent

entries. This issue is resolved in the next proposed architecture.

The IP-Split architecture employs an additional block of decoders to prevent equivalent repetitive

comparisons. The main shortcoming of this architecture is the PEB size that is dependent on the

FIB size. For large FIBs, it requires a large priority encoder, which is the bottleneck of this

architecture.

The IP-Split-Bucket architecture is a modified version of the IP-Split architecture. This

architecture reduces the priority encoder size by dividing the FIB into buckets, where only one

bucket contains viable comparison results at a time. Therefore, the priority encoder size is

reduced from the FIB size to the size of the largest existing bucket. The incoming IP address

specifies the corresponding bucket. IP-Split-Bucket is a memory-less high performance

architecture supporting large FIBs.

63

The Update-enabled IP-Split-Bucket architecture is the last architecture proposed to improve the

applicability of the IP-Split-Bucket architecture for high-update-rate IP address lookup. This

architecture employs a modified version of the IP-Split-Bucket architecture with a parallel update

system to support all types of updates.

The proposed architectures were synthesized for various sizes of real-world FIBs taken from the

RIS raw data set [30]. They were implemented on Virtex-7 and Virtex-5 families of FPGAs

using Xilinx and Synplify synthesis tools. The Full-Serial architecture was implemented on a

Virtex-5 XC5VLX50T FPGA using Xilinx ISE 13.4 synthesis tool for FIBs up to 46 k entries.

This architecture was implemented using two proposed options for the comparator architecture:

A and B. The Full-Parallel architecture was implemented on a Virtex-5 XC5VLX50T FPGA

using Xilinx ISE 13.4 synthesis tool for FIBs up to 4 k entries. Since this architecture employs

one comparator for each entry of the FIB, the logical resources of the existing FPGAs determine

the maximum supported FIB size.

The IP-Split architecture consists of four blocks of DB, CB, PEB and NHIB. All the blocks of IP-

Split architecture were synthesized for a Virtex-5 XC5VLX50T FPGA with 15.9 Synplify

synthesis tool. The synthesis results evaluations illustrate that the PEB is the bottleneck of the IP-

Split architecture. The IP-Split-Bucket architecture was implemented on a Virtex-7 FPGA using

the Xilinx ISE 13.4 synthesis tool. The results show that implementing a table of 524 k entries on

a XC7V2200T FPGA consumes 23% and 22% of the available LUTs and FFs, respectively. The

IP-Split-Bucket architecture has some design parameters that determine its complexity.

Therefore, a design exploration was performed to choose efficient values for each block

parameters.

The fourth proposed architecture, the IP-Split-Bucket architecture, avoids the shortcomings of the

previously proposed ones. It is a generic scalable memory-less high performance architecture. Its

main feature is the ability to handle large FIBs (524 k entries) while being memory-less.

Additionally, the proposed architecture does not face the limitations of trie-based techniques,

including nondeterministic latency and external memory access. Moreover, as the FIB is

hardcoded in the logical resources of the FPGA, the IP-Split-Bucket architecture does not require

TCAMs or other internal or external memory as opposed to existing TCAM-based and TCAM-

emulation approaches. In addition to high-performance, post-fabrication flexibility and scalability

64

are other crucial factors for emerging technologies such as Software Defined Networking (SDN).

Fast and low-cost realization of new communication protocols in SDN demands highly flexible

architectures that have the capacity to adapt to new protocols. TCAM-based techniques have

difficulty providing the required flexibility, whereas the IP-Split-Bucket architecture meets the

scalability factor by its design parameters.

Compared to previously reported memory-less approaches, when configured for similar moderate

size tables (18 k entries), the complexity of our solution is 60% less. Moreover, the closest

recently reported solution that can handle comparable size tables requires a large (7.7 Mb)

internal memory, while IP-Split-Bucket requires no memory. Future work will focus on the

Update-enabled IP-Split-Bucket architecture implementation on FPGAs and improving its

capability of supporting fast updates.

65

REFERENCES

[1] P. Ivan, "IPSpace," 13 August 2013. [Online]. Available:

http://blog.ipspace.net/2013/08/management-control-and-data-planes-in.html.

[2] G. Trotter, "Terminology for Forwarding Information Base (FIB) based Router," December

2001. [Online]. Available: https://tools.ietf.org/html/rfc3222.

[3] E. Z. Liebeherr, "http://www.cs.virginia.edu/~cs458/," March 2005. [Online]. Available:

http://www.cs.virginia.edu/~cs458/slides/module09b-routers.pdf.

[4] "Join us on the journey to 5g," Ericsson, 5 5 2016. [Online]. Available:

http://www.ericsson.com/spotlight/5g.

[5] "5G Vision: 100 Billion connections, 1 ms Latency, and 10 Gbps Throughput," huawei,

[Online]. Available: http://www.huawei.com/minisite/5g/en/defining-5g.html.

[6] V. Singh, "What is 5G Network? In Simple Words," CompleteGate, 26 January 2016.

[Online].

[7] S. Lofgren, "IEEE," 10 March 2015. [Online]. Available:

http://iot.ieee.org/newsletter/march-2015/iot-future-proofing-device-communications.html.

[8] "RIPE network coordination centre," [Online]. Available:

https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-

data.

[9] B. White and A. Robertson, "The Internet Corporation for Assigned Names and Numbers," 3

February 2011. [Online]. Available: https://www.icann.org/en/system/files/press-

materials/release-03feb11-en.pdf.

[10] L. Smith and I. Lipner, "Free Pool of IPv4 Address Space Depleted," Number Resource

Organization, 3 Februrary 2011. [Online]. Available: https://www.nro.net/news/ipv4-free-

pool-depleted.

[11] K. Zheng, C. Hu, H. Lu and B. Liu, "An Ultra High Throughput and Power Efficient

TCAM-Based IP Lookup Engine," Twenty-third AnnualJoint Conference of the IEEE

Computer and Communications Societies INFOCOM, vol. 3, pp. 1984-1994, 2004.

[12] D. Pao, "TCAM Organization for IPV6 Address Lookup," The 7th International Conference

on Advanced Communication Technology, vol. 1, pp. 26-31, 2005.

[13] Y. Sun and M. S. Kim, "A Hybrid Approach to CAM-Based Longest Prefix Matching for IP

66

Route Lookup," Global Telecommunications Conference, pp. 1-5, 2010.

[14] H. le, W. Jiang and V. K. Prasanna, "Scalable High Throughput SRAM-based Architecture

for IP-Lookup Using FPGA," International Conference on Field Programmable Logic and

Applications (FLP), pp. 134-142, 2008.

[15] Y.-H. E. Yang, O. Erdem and V. K. Prasanna, "High performance IP lookup on FPGA with

combined length-infix pipelined search," 19th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pp. 77-80, 2011.

[16] J. Matoušek, M. Skačan and J. Kořenek, "Memory efficient IP lookup in 100 GBPS

networks," 23rd International Conference on Field programmable Logic and Applications,

pp. 1-8, 2013.

[17] Z. K. Baker and V. K. Prasanna, "Automatic synthesis of efficient intrusion detection

systems on FPGA," IEEE Transactions on Dependable and Secure Computing, pp. 289-300,

2006.

[18] A. Rasmussen, A. Kragelund, M. Berger, H. Wessing and S. Ruepp, "TCAM-based High

Speed Longest Prefix Matching with Fast Incremental Table Updates," International

Conference on High Performance Switching and Routing, pp. 43-48, 2013.

[19] I. Sourdis and D. Pnevmatikatos, "Pre-decoded CAM for efficient and high-speed NIDS

pattern matching," Field-Programmable Custom Computing Machines, 2004. FCCM 2004.

12th Annual IEEE Symposium on, pp. 258-267, 2004.

[20] Z. Ullah, M. Kumar Jaiswal, Y. Chan and R. C. Cheung, "FPGA Implementation of SRAM-

based Ternary Content Addressable Memory," International Parallel and Distributed

Processing Symposium Workshops & PhD Forum, pp. 383-389, 2012.

[21] C. R. Clark and E. D. Schimmel, "Scalable Pattern Matching for High Speed Networks," in

12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2004.

FCCM 2004., 2004.

[22] J. Ditmar, K. Torkelsson and A. Jantsch, "A Dynamically Reconfigurable FPGA-based

Content Addresable Memory for Internet Protocol Characterization," 10th International FPL

conference, pp. 19-28, 2002.

[23] "UMC," SiberCore Technologies and UMC, [Online]. Available: www.umc.com.

[24] S. Yan and S. K. Min, "A Hybrid Approach to CAM-Based Longest Prefix Matching for IP

Route Lookup," Global Telecommunications Conference, pp. 1-5, 2010.

[25] W. Jiang, "Scalable Ternary Content Addressable Memory Implementation Using FPGAs,"

IEEE Symposium on Architecture for Networking and Communications Systems (ANCS),

67

pp. 71-82, 2013.

[26] J. H. Mun and H. Lim, "New Approach for Efficient IPAddress Lookup Using a Bloom

Filter in Trie-Based Algorithms," in IEEE Transactions on Computers, 2016.

[27] S. A. Guccione, D. Levi and D. Downs, "A Reconfigurable Content Addressable Memory,"

Custom Integrated Circuits Conference, pp. 24.1/1-24.1/4, 1990.

[28] B. Gamache, Z. Pfeffer and S. Khatri, "A Fast Ternary CAM Design for IP Networking

Applications," International Conference on Computer Communications and Networks, pp.

434-439, 2003.

[29] K. Locke, "Parameterizable Content-Addressable," Xilinx Application note, 2011.

[30] "RIS Raw Data," [Online]. Available: http://data.ris.ripe.net.

[31] L. Bin and C. H. Jonathan, in High Performance Switches and Routers, New Jersey, John

Wiley & Sons, Inc, 2007, pp. 6-8.

[32] R. Margaret, "TechTarget," March 2013. [Online]. Available:

http://searchsdn.techtarget.com/definition/data-plane-DP.

[33] M. Rouse, "WhatIs," TechTarget, November 2014. [Online]. Available:

http://whatis.techtarget.com/definition/latency.

	Dedication
	Acknowledgements
	Résumé
	Abstract
	Table of contents
	List OF TABLES
	List of figures
	List of symbols and abbreviations
	Chapter 1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Thesis Outline

	Chapter 2 Related Work
	2.1 Address Lookup Engine
	2.2 CAM-Based Techniques
	2.2.1 TCAM-Based Techniques
	2.2.2 Hybrid TCAM-BCAM Technique

	2.3 Trie-Based Techniques
	2.4 CAM-Emulation Techniques
	2.4.1 BCAM-Emulation Techniques
	2.4.2 TCAM-Emulation Techniques

	2.5 Comparison of the Existing Work

	Chapter 3 Proposed Address Lookup Engine Architectures
	3.1 Full-Serial Architecture
	3.1.1 Option A
	3.1.2 Option B

	3.2 Full-Parallel Architecture
	3.3 IP-Split Architecture
	3.3.1 Decoder Block
	3.3.2 Comparator Block
	3.3.3 Priority Encoder Block
	3.3.4 Next Hop Information Block

	3.4 IP-Split-Bucket Architecture
	3.4.1 Comparator Block
	3.4.2 Priority Encoder Block

	3.5 Update-Enabled IP-Split-Bucket Architecture

	Chapter 4 Experimental Results and Discussion
	4.1 Full-Serial Architecture
	4.2 Full-Parallel Architecture
	4.3 IP-Split Architecture
	4.3.1 Synthesis Results of the Decoder Block
	4.3.2 Synthesis Results of the Comparator Block
	4.3.3 Synthesis Results of Priority Encoder Block
	4.3.4 Synthesis Results of the NHIB
	4.3.5 Discussion

	4.4 IP-Split-Bucket Architecture
	4.4.1 Synthesis Results of the IP-Split-Bucket Architecture
	4.4.2 Comparison of IP-Split-Bucket Architecture and Existing Work
	4.4.3 The Size and the Starting Bit Selection for the Bucket Identifier
	4.4.4 Decoders Selection

	Chapter 5 Conclusion and Future Work
	References

