21,970 research outputs found

    A real-time demand response pricing model for the smart grid

    Get PDF
    Submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)This thesis contributes to a novel model for Real-Time Price Suggestions (RTPS) of the Smart Grid (SG), which is the next generation modern bi-directional grid, particularly with respect to the pricing model. The research employs an experiment-based methodology which includes the use of a simulation technique. The research developed a Demand Response (DR) pricing model. Energy users are keen to reduce their bills, and Energy Providers (EP) is also keen on reducing their industrial costs. The DR model would benefit them both. The model has been tested with the UK-based traditional price value using real-time usage data. Energy users significantly reduced their bill and EP reduced their industrial cost due to load shifting. The Price Control Unit (PCU) and Price Suggestion Unit (PSU) utilise a set of embedded algorithms to vary price based upon demand. This model makes suggestions based on an energy threshold and makes use of Simultaneous Perturbation Stochastic Approximation Methods to produce prices. The results show that bill and peak load reductions benefit both the energy provider and users. The tests on a daily basis and monthly basis both benefit energy users and energy provider. The model has been validated by building a hardware prototype. This model also addresses users’ preferences; if users are non-responsive, they can still reduce their bills. The model contributes significantly to the existing models, and the novel contribution is the PSU which uniquely benefits energy users and provider. Therefore, there is a number of fundamental aspect of contributions to the model RTPS constitutes the final thesis of the PhD. The Real-Time Pricing is a better pricing system, algorithm developed on a daily basis and monthly basis and finally building a hardware prototype

    Parallel statistical model checking for safety verification in smart grids

    Get PDF
    By using small computing devices deployed at user premises, Autonomous Demand Response (ADR) adapts users electricity consumption to given time-dependent electricity tariffs. This allows end-users to save on their electricity bill and Distribution System Operators to optimise (through suitable time-dependent tariffs) management of the electric grid by avoiding demand peaks. Unfortunately, even with ADR, users power consumption may deviate from the expected (minimum cost) one, e.g., because ADR devices fail to correctly forecast energy needs at user premises. As a result, the aggregated power demand may present undesirable peaks. In this paper we address such a problem by presenting methods and a software tool (APD-Analyser) implementing them, enabling Distribution System Operators to effectively verify that a given time-dependent electricity tariff achieves the desired goals even when end-users deviate from their expected behaviour. We show feasibility of the proposed approach through a realistic scenario from a medium voltage Danish distribution network

    A Minimal Incentive-based Demand Response Program With Self Reported Baseline Mechanism

    Full text link
    In this paper, we propose a novel incentive based Demand Response (DR) program with a self reported baseline mechanism. The System Operator (SO) managing the DR program recruits consumers or aggregators of DR resources. The recruited consumers are required to only report their baseline, which is the minimal information necessary for any DR program. During a DR event, a set of consumers, from this pool of recruited consumers, are randomly selected. The consumers are selected such that the required load reduction is delivered. The selected consumers, who reduce their load, are rewarded for their services and other recruited consumers, who deviate from their reported baseline, are penalized. The randomization in selection and penalty ensure that the baseline inflation is controlled. We also justify that the selection probability can be simultaneously used to control SO's cost. This allows the SO to design the mechanism such that its cost is almost optimal when there are no recruitment costs or at least significantly reduced otherwise. Finally, we also show that the proposed method of self-reported baseline outperforms other baseline estimation methods commonly used in practice
    • …
    corecore