207 research outputs found

    Simulating Patho-realistic Ultrasound Images using Deep Generative Networks with Adversarial Learning

    Full text link
    Ultrasound imaging makes use of backscattering of waves during their interaction with scatterers present in biological tissues. Simulation of synthetic ultrasound images is a challenging problem on account of inability to accurately model various factors of which some include intra-/inter scanline interference, transducer to surface coupling, artifacts on transducer elements, inhomogeneous shadowing and nonlinear attenuation. Current approaches typically solve wave space equations making them computationally expensive and slow to operate. We propose a generative adversarial network (GAN) inspired approach for fast simulation of patho-realistic ultrasound images. We apply the framework to intravascular ultrasound (IVUS) simulation. A stage 0 simulation performed using pseudo B-mode ultrasound image simulator yields speckle mapping of a digitally defined phantom. The stage I GAN subsequently refines them to preserve tissue specific speckle intensities. The stage II GAN further refines them to generate high resolution images with patho-realistic speckle profiles. We evaluate patho-realism of simulated images with a visual Turing test indicating an equivocal confusion in discriminating simulated from real. We also quantify the shift in tissue specific intensity distributions of the real and simulated images to prove their similarity.Comment: To appear in the Proceedings of the 2018 IEEE International Symposium on Biomedical Imaging (ISBI 2018

    Freehand Ultrasound Image Simulation with Spatially-Conditioned Generative Adversarial Networks

    Get PDF
    Sonography synthesis has a wide range of applications, including medical procedure simulation, clinical training and multimodality image registration. In this paper, we propose a machine learning approach to simulate ultrasound images at given 3D spatial locations (relative to the patient anatomy), based on conditional generative adversarial networks (GANs). In particular, we introduce a novel neural network architecture that can sample anatomically accurate images conditionally on spatial position of the (real or mock) freehand ultrasound probe. To ensure an effective and efficient spatial information assimilation, the proposed spatially-conditioned GANs take calibrated pixel coordinates in global physical space as conditioning input, and utilise residual network units and shortcuts of conditioning data in the GANs' discriminator and generator, respectively. Using optically tracked B-mode ultrasound images, acquired by an experienced sonographer on a fetus phantom, we demonstrate the feasibility of the proposed method by two sets of quantitative results: distances were calculated between corresponding anatomical landmarks identified in the held-out ultrasound images and the simulated data at the same locations unseen to the networks; a usability study was carried out to distinguish the simulated data from the real images. In summary, we present what we believe are state-of-the-art visually realistic ultrasound images, simulated by the proposed GAN architecture that is stable to train and capable of generating plausibly diverse image samples.Comment: Accepted to MICCAI RAMBO 201

    NiftyNet: a deep-learning platform for medical imaging

    Get PDF
    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this application requires substantial implementation effort. Thus, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on TensorFlow and supports TensorBoard visualization of 2D and 3D images and computational graphs by default. We present 3 illustrative medical image analysis applications built using NiftyNet: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. NiftyNet enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.Comment: Wenqi Li and Eli Gibson contributed equally to this work. M. Jorge Cardoso and Tom Vercauteren contributed equally to this work. 26 pages, 6 figures; Update includes additional applications, updated author list and formatting for journal submissio

    Endoscopic Ultrasound Image Synthesis Using a Cycle-Consistent Adversarial Network

    Get PDF
    Endoscopic ultrasound (EUS) is a challenging procedure that requires skill, both in endoscopy and ultrasound image interpretation. Classification of key anatomical landmarks visible on EUS images can assist the gastroenterologist during navigation. Current applications of deep learning have shown the ability to automatically classify ultrasound images with high accuracy. However, these techniques require a large amount of labelled data which is time consuming to obtain, and in the case of EUS, is also a difficult task to perform retrospectively due to the lack of 3D context. In this paper, we propose the use of an image-to-image translation method to create synthetic EUS (sEUS) images from CT data, that can be used as a data augmentation strategy when EUS data is scarce. We train a cycle-consistent adversarial network with unpaired EUS images and CT slices extracted in a manner such that they mimic plausible EUS views, to generate sEUS images from the pancreas, aorta and liver. We quantitatively evaluate the use of sEUS images in a classification sub-task and assess the Fréchet Inception Distance. We show that synthetic data, obtained from CT data, imposes only a minor classification accuracy penalty and may help generalization to new unseen patients. The code and a dataset containing generated sEUS images are available at: https://ebonmati.github.io

    OnUVS: Online Feature Decoupling Framework for High-Fidelity Ultrasound Video Synthesis

    Full text link
    Ultrasound (US) imaging is indispensable in clinical practice. To diagnose certain diseases, sonographers must observe corresponding dynamic anatomic structures to gather comprehensive information. However, the limited availability of specific US video cases causes teaching difficulties in identifying corresponding diseases, which potentially impacts the detection rate of such cases. The synthesis of US videos may represent a promising solution to this issue. Nevertheless, it is challenging to accurately animate the intricate motion of dynamic anatomic structures while preserving image fidelity. To address this, we present a novel online feature-decoupling framework called OnUVS for high-fidelity US video synthesis. Our highlights can be summarized by four aspects. First, we introduced anatomic information into keypoint learning through a weakly-supervised training strategy, resulting in improved preservation of anatomical integrity and motion while minimizing the labeling burden. Second, to better preserve the integrity and textural information of US images, we implemented a dual-decoder that decouples the content and textural features in the generator. Third, we adopted a multiple-feature discriminator to extract a comprehensive range of visual cues, thereby enhancing the sharpness and fine details of the generated videos. Fourth, we constrained the motion trajectories of keypoints during online learning to enhance the fluidity of generated videos. Our validation and user studies on in-house echocardiographic and pelvic floor US videos showed that OnUVS synthesizes US videos with high fidelity.Comment: 14 pages, 13 figures and 6 table

    Trustworthy and Intelligent COVID-19 Diagnostic IoMT through XR and Deep-Learning-Based Clinic Data Access

    Get PDF
    This article presents a novel extended reality (XR) and deep-learning-based Internet-of-Medical-Things (IoMT) solution for the COVID-19 telemedicine diagnostic, which systematically combines virtual reality/augmented reality (AR) remote surgical plan/rehearse hardware, customized 5G cloud computing and deep learning algorithms to provide real-time COVID-19 treatment scheme clues. Compared to existing perception therapy techniques, our new technique can significantly improve performance and security. The system collected 25 clinic data from the 347 positive and 2270 negative COVID-19 patients in the Red Zone by 5G transmission. After that, a novel auxiliary classifier generative adversarial network-based intelligent prediction algorithm is conducted to train the new COVID-19 prediction model. Furthermore, The Copycat network is employed for the model stealing and attack for the IoMT to improve the security performance. To simplify the user interface and achieve an excellent user experience, we combined the Red Zone's guiding images with the Green Zone's view through the AR navigate clue by using 5G. The XR surgical plan/rehearse framework is designed, including all COVID-19 surgical requisite details that were developed with a real-time response guaranteed. The accuracy, recall, F1-score, and area under the ROC curve (AUC) area of our new IoMT were 0.92, 0.98, 0.95, and 0.98, respectively, which outperforms the existing perception techniques with significantly higher accuracy performance. The model stealing also has excellent performance, with the AUC area of 0.90 in Copycat slightly lower than the original model. This study suggests a new framework in the COVID-19 diagnostic integration and opens the new research about the integration of XR and deep learning for IoMT implementation
    corecore