6 research outputs found

    Enhancing WPA2-PSK four-way handshaking after re-authentication to deal with de-authentication followed by brute-force attack a novel re-authentication protocol

    Get PDF
    The nature of wireless network transmission and the emerging attacks are continuously creating or exploiting more vulnerabilities. Despite the fact that the security mechanisms and protocols are constantly upgraded and enhanced, the Small Office/Home Office (SOHO) environments that cannot afford a separate authentication system, and generally adopt the IEEE 802.11 Wi-Fi-Protected-Access-2/Pre-Shared-Key (WPA2-PSK) are still exposed to some attack categories such as de-authentication attacks that aim to push wireless client to re-authenticate to the Access Point (AP) and try to capture the keys exchanged during the handshake to compromise the network security. This kind of attack is impossible to detect or prevent in spite of having an Intrusion Detection and Prevention System (IDPS) installed on the client or on the AP, especially when the attack is not repetitive and is targeting only one client. This paper proposes a novel method which can mitigate and eliminate the risk of exposing the PSK to be captured during the re-authentication process by introducing a novel re-authentication protocol relying on an enhanced four-way handshake which does not require any hardware upgrade or heavy-weight cryptography affecting the network flexibility and performances

    Enhancing WPA2-PSK four-way handshaking after re-authentication to deal with de-authentication followed by brute-force attack a novel re-authentication protocol

    Get PDF
    The nature of wireless network transmission and the emerging attacks are continuously creating or exploiting more vulnerabilities. Despite the fact that the security mechanisms and protocols are constantly upgraded and enhanced, the Small Office/Home Office (SOHO) environments that cannot afford a separate authentication system, and generally adopt the IEEE 802.11 Wi-Fi-Protected-Access-2/Pre-Shared-Key (WPA2-PSK) are still exposed to some attack categories such as de-authentication attacks that aim to push wireless client to re-authenticate to the Access Point (AP) and try to capture the keys exchanged during the handshake to compromise the network security. This kind of attack is impossible to detect or prevent in spite of having an Intrusion Detection and Prevention System (IDPS) installed on the client or on the AP, especially when the attack is not repetitive and is targeting only one client. This paper proposes a novel method which can mitigate and eliminate the risk of exposing the PSK to be captured during the re-authentication process by introducing a novel re-authentication protocol relying on an enhanced four-way handshake which does not require any hardware upgrade or heavy-weight cryptography affecting the network flexibility and performances

    A REAL-TIME INTRUSION PREVENTION SYSTEM FOR COMMERCIAL ENTERPRISE DATABASES AND FILE SYSTEMS

    No full text
    Modern intrusion detection systems are comprised of three basically different approaches, host based, network based, and a third relatively recent addition called procedural based detection. The first two have been extremely popular in the commercial market for a number of years now because they are relatively simple to use, understand and maintain. However, they fall prey to a number of shortcomings such as scaling with increased traffic requirements, use of complex and false positive prone signature databases, and their inability to detect novel intrusive attempts. This paper presents an overview of our work in creating a practical database intrusion detection system. Based on many years of Database Security Research, the proposed solution detects a wide range of specific and general forms of misuse, provides detailed reports, and has a low false-alarm rate. Traditional commercial implementations of database security mechanisms are very limited in defending successful data attacks. Authorized but malicious transactions can make a database useless by impairing its integrity and availability. The proposed solution offers the ability to detect misuse and subversion through the direct monitoring of database operations inside the database host, providing an important complement to host-based and network-based surveillance
    corecore