58 research outputs found

    Elevating commodity storage with the SALSA host translation layer

    Full text link
    To satisfy increasing storage demands in both capacity and performance, industry has turned to multiple storage technologies, including Flash SSDs and SMR disks. These devices employ a translation layer that conceals the idiosyncrasies of their mediums and enables random access. Device translation layers are, however, inherently constrained: resources on the drive are scarce, they cannot be adapted to application requirements, and lack visibility across multiple devices. As a result, performance and durability of many storage devices is severely degraded. In this paper, we present SALSA: a translation layer that executes on the host and allows unmodified applications to better utilize commodity storage. SALSA supports a wide range of single- and multi-device optimizations and, because is implemented in software, can adapt to specific workloads. We describe SALSA's design, and demonstrate its significant benefits using microbenchmarks and case studies based on three applications: MySQL, the Swift object store, and a video server.Comment: Presented at 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS

    Improving write performance by enhancing internal parallelism of Solid State Drives

    Full text link
    Abstract—Most researches of Solid State Drives (SSDs) archi-tectures rely on Flash Translation Layer (FTL) algorithms and wear-leveling; however, internal parallelism in Solid State Drives has not been well explored. In this research, we proposed a new strategy to improve SSD write performance by enhancing internal parallelism inside SSDs. A SDRAM buffer is added in the design for buffering and scheduling write requests. Because the same logical block numbers may be translated to different physical numbers at different times in FTL, the on-board SDRAM buffer is used to buffer requests at the lower level of FTL. When the buffer is full, same amount of data will be assigned to each storage package in SSDs to enhance internal parallelism. To accurately evaluate performance, we use both synthetic workloads and real-world applications in experiments. We compare the enhanced internal parallelism scheme with the traditional LRU strategy since it is unfair to compare an SSD having buffer with an SSD without a buffer. The simulation results demonstrate that the writing performance of our design is significantly improved compared with the LRU-cache strategy with the same amount of buffer sizes. I

    Customized Interfaces for Modern Storage Devices

    Get PDF
    In the past decade, we have seen two major evolutions on storage technologies: flash storage and non-volatile memory. These storage technologies are both vastly different in their properties and implementations than the disk-based storage devices that current soft- ware stacks and applications have been built for and optimized over several decades. The second major trend that the industry has been witnessing is new classes of applications that are moving away from the conventional ACID (SQL) database access to storage. The resulting new class of NoSQL and in-memory storage applications consume storage using entirely new application programmer interfaces than their predecessors. The most significant outcome given these trends is that there is a great mismatch in terms of both application access interfaces and implementations of storage stacks when consuming these new technologies. In this work, we study the unique, intrinsic properties of current and next-generation storage technologies and propose new interfaces that allow application developers to get the most out of these storage technologies without having to become storage experts them- selves. We first build a new type of NoSQL key-value (KV) store that is FTL-aware rather than flash optimized. Our novel FTL cooperative design for KV store proofed to simplify development and outperformed state of the art KV stores, while reducing write amplification. Next, to address the growing relevance of byte-addressable persistent memory, we build a new type of KV store that is customized and optimized for persistent memory. The resulting KV store illustrates how to program persistent effectively while exposing a simpler interface and performing better than more general solutions. As the final component of the thesis, we build a generic, native storage solution for byte-addressable persistent memory. This new solution provides the most generic interface to applications, allow- ing applications to store and manipulate arbitrarily structured data with strong durability and consistency properties. With this new solution, existing applications as well as new “green field” applications will get to experience native performance and interfaces that are customized for the next storage technology evolution

    A Survey on the Integration of NAND Flash Storage in the Design of File Systems and the Host Storage Software Stack

    Get PDF
    With the ever-increasing amount of data generate in the world, estimated to reach over 200 Zettabytes by 2025, pressure on efficient data storage systems is intensifying. The shift from HDD to flash-based SSD provides one of the most fundamental shifts in storage technology, increasing performance capabilities significantly. However, flash storage comes with different characteristics than prior HDD storage technology. Therefore, storage software was unsuitable for leveraging the capabilities of flash storage. As a result, a plethora of storage applications have been design to better integrate with flash storage and align with flash characteristics. In this literature study we evaluate the effect the introduction of flash storage has had on the design of file systems, which providing one of the most essential mechanisms for managing persistent storage. We analyze the mechanisms for effectively managing flash storage, managing overheads of introduced design requirements, and leverage the capabilities of flash storage. Numerous methods have been adopted in file systems, however prominently revolve around similar design decisions, adhering to the flash hardware constrains, and limiting software intervention. Future design of storage software remains prominent with the constant growth in flash-based storage devices and interfaces, providing an increasing possibility to enhance flash integration in the host storage software stack

    A Survey on the Integration of NAND Flash Storage in the Design of File Systems and the Host Storage Software Stack

    Full text link
    With the ever-increasing amount of data generate in the world, estimated to reach over 200 Zettabytes by 2025, pressure on efficient data storage systems is intensifying. The shift from HDD to flash-based SSD provides one of the most fundamental shifts in storage technology, increasing performance capabilities significantly. However, flash storage comes with different characteristics than prior HDD storage technology. Therefore, storage software was unsuitable for leveraging the capabilities of flash storage. As a result, a plethora of storage applications have been design to better integrate with flash storage and align with flash characteristics. In this literature study we evaluate the effect the introduction of flash storage has had on the design of file systems, which providing one of the most essential mechanisms for managing persistent storage. We analyze the mechanisms for effectively managing flash storage, managing overheads of introduced design requirements, and leverage the capabilities of flash storage. Numerous methods have been adopted in file systems, however prominently revolve around similar design decisions, adhering to the flash hardware constrains, and limiting software intervention. Future design of storage software remains prominent with the constant growth in flash-based storage devices and interfaces, providing an increasing possibility to enhance flash integration in the host storage software stack

    Theory and practice of flash memory mobile forensics

    Get PDF
    This paper is an introduction to flash memory forensics with a special focus on completeness of evidence acquired from mobile phones. Moving through academic papers and industrial documents will be introduced the particular nature of non-volatile memories present in nowadays mobile phones; how they really work and which challenges they pose to forensic investigators. Then will be presented an advanced test in which some brand new flash memories have been used to hide data in man-made bad blocks: the aim is to verify if forensic software tools are able to acquire data from such blocks, and to evaluate the possibility to hide data at analysts’ eyes

    Block Cleaning Process in Flash Memory

    Get PDF

    LightNVM: The Linux Open-Channel SSD Subsystem

    Get PDF
    • …
    corecore