1,818 research outputs found

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Quality Evaluation of Machine Learning-based Point Cloud Coding Solutions

    Get PDF
    In this paper, a quality evaluation of three point cloud coding solutions based on machine learning technology is presented, notably, ADLPCC, PCC_GEO_CNN, and PCGC, as well as LUT_SR, which uses multi-resolution Look-Up Tables. Moreover, the MPEG G-PCC was used as an anchor. A set of six point clouds, representing both landscapes and objects were coded using the five encoders at different bit rates, and a subjective test, where the distorted and reference point clouds were rotated in a video sequence side by side, is carried out to assess their performance. Furthermore, the performance of point cloud objective quality metrics that usually provide a good representation of the coded content is analyzed against the subjective evaluation results. The obtained results suggest that some of these metrics fail to provide a good representation of the perceived quality, and thus are not suitable to evaluate some distortions created by machine learning-based solutions. A comparison between the analyzed metrics and the type of represented scene or codec is also presented.This research was funded by the Portuguese FCT-Fundação para a Ciência e Tecnologia under the project UIDB/50008/2020, PLive X-0017-LX-20, and by operation Centro-01-0145-FEDER-000019 - C4 - Centro de Competencias em Cloud Computing.info:eu-repo/semantics/acceptedVersio

    Visual Quality Assessment and Blur Detection Based on the Transform of Gradient Magnitudes

    Get PDF
    abstract: Digital imaging and image processing technologies have revolutionized the way in which we capture, store, receive, view, utilize, and share images. In image-based applications, through different processing stages (e.g., acquisition, compression, and transmission), images are subjected to different types of distortions which degrade their visual quality. Image Quality Assessment (IQA) attempts to use computational models to automatically evaluate and estimate the image quality in accordance with subjective evaluations. Moreover, with the fast development of computer vision techniques, it is important in practice to extract and understand the information contained in blurred images or regions. The work in this dissertation focuses on reduced-reference visual quality assessment of images and textures, as well as perceptual-based spatially-varying blur detection. A training-free low-cost Reduced-Reference IQA (RRIQA) method is proposed. The proposed method requires a very small number of reduced-reference (RR) features. Extensive experiments performed on different benchmark databases demonstrate that the proposed RRIQA method, delivers highly competitive performance as compared with the state-of-the-art RRIQA models for both natural and texture images. In the context of texture, the effect of texture granularity on the quality of synthesized textures is studied. Moreover, two RR objective visual quality assessment methods that quantify the perceived quality of synthesized textures are proposed. Performance evaluations on two synthesized texture databases demonstrate that the proposed RR metrics outperforms full-reference (FR), no-reference (NR), and RR state-of-the-art quality metrics in predicting the perceived visual quality of the synthesized textures. Last but not least, an effective approach to address the spatially-varying blur detection problem from a single image without requiring any knowledge about the blur type, level, or camera settings is proposed. The evaluations of the proposed approach on a diverse sets of blurry images with different blur types, levels, and content demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods qualitatively and quantitatively.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    The application of visual saliency models in objective image quality assessment: a statistical evaluation

    Get PDF
    Advances in image quality assessment have shown the potential added value of including visual attention aspects in its objective assessment. Numerous models of visual saliency are implemented and integrated in different image quality metrics (IQMs), but the gain in reliability of the resulting IQMs varies to a large extent. The causes and the trends of this variation would be highly beneficial for further improvement of IQMs, but are not fully understood. In this paper, an exhaustive statistical evaluation is conducted to justify the added value of computational saliency in objective image quality assessment, using 20 state-of-the-art saliency models and 12 best-known IQMs. Quantitative results show that the difference in predicting human fixations between saliency models is sufficient to yield a significant difference in performance gain when adding these saliency models to IQMs. However, surprisingly, the extent to which an IQM can profit from adding a saliency model does not appear to have direct relevance to how well this saliency model can predict human fixations. Our statistical analysis provides useful guidance for applying saliency models in IQMs, in terms of the effect of saliency model dependence, IQM dependence, and image distortion dependence. The testbed and software are made publicly available to the research community
    • …
    corecore