3,170 research outputs found

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Have I seen this place before? A fast and robust loop detection and correction method for 3D Lidar SLAM

    Get PDF
    In this paper, we present a complete loop detection and correction system developed for data originating from lidar scanners. Regarding detection, we propose a combination of a global point cloud matcher with a novel registration algorithm to determine loop candidates in a highly effective way. The registration method can deal with point clouds that are largely deviating in orientation while improving the efficiency over existing techniques. In addition, we accelerated the computation of the global point cloud matcher by a factor of 2–4, exploiting the GPU to its maximum. Experiments demonstrated that our combined approach more reliably detects loops in lidar data compared to other point cloud matchers as it leads to better precision–recall trade-offs: for nearly 100% recall, we gain up to 7% in precision. Finally, we present a novel loop correction algorithm that leads to an improvement by a factor of 2 on the average and median pose error, while at the same time only requires a handful of seconds to complete

    Learning to Navigate the Energy Landscape

    Full text link
    In this paper, we present a novel and efficient architecture for addressing computer vision problems that use `Analysis by Synthesis'. Analysis by synthesis involves the minimization of the reconstruction error which is typically a non-convex function of the latent target variables. State-of-the-art methods adopt a hybrid scheme where discriminatively trained predictors like Random Forests or Convolutional Neural Networks are used to initialize local search algorithms. While these methods have been shown to produce promising results, they often get stuck in local optima. Our method goes beyond the conventional hybrid architecture by not only proposing multiple accurate initial solutions but by also defining a navigational structure over the solution space that can be used for extremely efficient gradient-free local search. We demonstrate the efficacy of our approach on the challenging problem of RGB Camera Relocalization. To make the RGB camera relocalization problem particularly challenging, we introduce a new dataset of 3D environments which are significantly larger than those found in other publicly-available datasets. Our experiments reveal that the proposed method is able to achieve state-of-the-art camera relocalization results. We also demonstrate the generalizability of our approach on Hand Pose Estimation and Image Retrieval tasks
    corecore