29 research outputs found

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.

    Budgeted Out-Tree Maximization with Submodular Prizes

    Get PDF

    Top-k Route Search through Submodularity Modeling of Recurrent POI Features

    Full text link
    We consider a practical top-k route search problem: given a collection of points of interest (POIs) with rated features and traveling costs between POIs, a user wants to find k routes from a source to a destination and limited in a cost budget, that maximally match her needs on feature preferences. One challenge is dealing with the personalized diversity requirement where users have various trade-off between quantity (the number of POIs with a specified feature) and variety (the coverage of specified features). Another challenge is the large scale of the POI map and the great many alternative routes to search. We model the personalized diversity requirement by the whole class of submodular functions, and present an optimal solution to the top-k route search problem through indices for retrieving relevant POIs in both feature and route spaces and various strategies for pruning the search space using user preferences and constraints. We also present promising heuristic solutions and evaluate all the solutions on real life data.Comment: 11 pages, 7 figures, 2 table

    Constant-Factor Approximation to Deadline TSP and Related Problems in (Almost) Quasi-Polytime

    Get PDF
    We investigate a genre of vehicle-routing problems (VRPs), that we call max-reward VRPs, wherein nodes located in a metric space have associated rewards that depend on their visiting times, and we seek a path that earns maximum reward. A prominent problem in this genre is deadline TSP, where nodes have deadlines and we seek a path that visits all nodes by their deadlines and earns maximum reward. Our main result is a constant-factor approximation for deadline TSP running in time O(n^O(log(n?))) in metric spaces with integer distances at most ?. This is the first improvement over the approximation factor of O(log n) due to Bansal et al. [N. Bansal et al., 2004] in over 15 years (but is achieved in super-polynomial time). Our result provides the first concrete indication that log n is unlikely to be a real inapproximability barrier for deadline TSP, and raises the exciting possibility that deadline TSP might admit a polytime constant-factor approximation. At a high level, we obtain our result by carefully guessing an appropriate sequence of O(log (n?)) nodes appearing on the optimal path, and finding suitable paths between any two consecutive guessed nodes. We argue that the problem of finding a path between two consecutive guessed nodes can be relaxed to an instance of a special case of deadline TSP called point-to-point (P2P) orienteering. Any approximation algorithm for P2P orienteering can then be utilized in conjunction with either a greedy approach, or an LP-rounding approach, to find a good set of paths overall between every pair of guessed nodes. While concatenating these paths does not immediately yield a feasible solution, we argue that it can be covered by a constant number of feasible solutions. Overall our result therefore provides a novel reduction showing that any ?-approximation for P2P orienteering can be leveraged to obtain an O(?)-approximation for deadline TSP in O(n^O(log n?)) time. Our results extend to yield the same guarantees (in approximation ratio and running time) for a substantial generalization of deadline TSP, where the reward obtained by a client is given by an arbitrary non-increasing function (specified by a value oracle) of its visiting time. Finally, we discuss applications of our results to variants of deadline TSP, including settings where both end-nodes are specified, nodes have release dates, and orienteering with time windows

    Minimum Latency Submodular Cover

    Full text link
    We study the Minimum Latency Submodular Cover problem (MLSC), which consists of a metric (V,d)(V,d) with source rVr\in V and mm monotone submodular functions f1,f2,...,fm:2V[0,1]f_1, f_2, ..., f_m: 2^V \rightarrow [0,1]. The goal is to find a path originating at rr that minimizes the total cover time of all functions. This generalizes well-studied problems, such as Submodular Ranking [AzarG11] and Group Steiner Tree [GKR00]. We give a polynomial time O(\log \frac{1}{\eps} \cdot \log^{2+\delta} |V|)-approximation algorithm for MLSC, where ϵ>0\epsilon>0 is the smallest non-zero marginal increase of any {fi}i=1m\{f_i\}_{i=1}^m and δ>0\delta>0 is any constant. We also consider the Latency Covering Steiner Tree problem (LCST), which is the special case of \mlsc where the fif_is are multi-coverage functions. This is a common generalization of the Latency Group Steiner Tree [GuptaNR10a,ChakrabartyS11] and Generalized Min-sum Set Cover [AzarGY09, BansalGK10] problems. We obtain an O(log2V)O(\log^2|V|)-approximation algorithm for LCST. Finally we study a natural stochastic extension of the Submodular Ranking problem, and obtain an adaptive algorithm with an O(\log 1/ \eps) approximation ratio, which is best possible. This result also generalizes some previously studied stochastic optimization problems, such as Stochastic Set Cover [GoemansV06] and Shared Filter Evaluation [MunagalaSW07, LiuPRY08].Comment: 23 pages, 1 figur

    On rooted kk-connectivity problems in quasi-bipartite digraphs

    Full text link
    We consider the directed Rooted Subset kk-Edge-Connectivity problem: given a set TVT \subseteq V of terminals in a digraph G=(V+r,E)G=(V+r,E) with edge costs and an integer kk, find a min-cost subgraph of GG that contains kk edge disjoint rtrt-paths for all tTt \in T. The case when every edge of positive cost has head in TT admits a polynomial time algorithm due to Frank, and the case when all positive cost edges are incident to rr is equivalent to the kk-Multicover problem. Recently, [Chan et al. APPROX20] obtained ratio O(lnklnT)O(\ln k \ln |T|) for quasi-bipartite instances, when every edge in GG has an end in T+rT+r. We give a simple proof for the same ratio for a more general problem of covering an arbitrary TT-intersecting supermodular set function by a minimum cost edge set, and for the case when only every positive cost edge has an end in T+rT+r
    corecore