5,102 research outputs found

    Learned Multi-Patch Similarity

    Full text link
    Estimating a depth map from multiple views of a scene is a fundamental task in computer vision. As soon as more than two viewpoints are available, one faces the very basic question how to measure similarity across >2 image patches. Surprisingly, no direct solution exists, instead it is common to fall back to more or less robust averaging of two-view similarities. Encouraged by the success of machine learning, and in particular convolutional neural networks, we propose to learn a matching function which directly maps multiple image patches to a scalar similarity score. Experiments on several multi-view datasets demonstrate that this approach has advantages over methods based on pairwise patch similarity.Comment: 10 pages, 7 figures, Accepted at ICCV 201

    Right Scaling for Right Pricing: A Case Study on Total Cost of Ownership Measurement for Cloud Migration

    Get PDF
    Cloud computing promises traditional enterprises and independent software vendors a myriad of advantages over on-premise installations including cost, operational and organizational efficiencies. The decision to migrate software configured for on-premise delivery to the cloud requires careful technical consideration and planning. In this chapter, we discuss the impact of right-scaling on the cost modelling for migration decision making and price setting of software for commercial resale. An integrated process is presented for measuring total cost of ownership, taking in to account IaaS/PaaS resource consumption based on forecast SaaS usage levels. The process is illustrated with a real world case study

    Information-Theoretic Active Learning for Content-Based Image Retrieval

    Full text link
    We propose Information-Theoretic Active Learning (ITAL), a novel batch-mode active learning method for binary classification, and apply it for acquiring meaningful user feedback in the context of content-based image retrieval. Instead of combining different heuristics such as uncertainty, diversity, or density, our method is based on maximizing the mutual information between the predicted relevance of the images and the expected user feedback regarding the selected batch. We propose suitable approximations to this computationally demanding problem and also integrate an explicit model of user behavior that accounts for possible incorrect labels and unnameable instances. Furthermore, our approach does not only take the structure of the data but also the expected model output change caused by the user feedback into account. In contrast to other methods, ITAL turns out to be highly flexible and provides state-of-the-art performance across various datasets, such as MIRFLICKR and ImageNet.Comment: GCPR 2018 paper (14 pages text + 2 pages references + 6 pages appendix

    MACHS: Mitigating the Achilles Heel of the Cloud through High Availability and Performance-aware Solutions

    Get PDF
    Cloud computing is continuously growing as a business model for hosting information and communication technology applications. However, many concerns arise regarding the quality of service (QoS) offered by the cloud. One major challenge is the high availability (HA) of cloud-based applications. The key to achieving availability requirements is to develop an approach that is immune to cloud failures while minimizing the service level agreement (SLA) violations. To this end, this thesis addresses the HA of cloud-based applications from different perspectives. First, the thesis proposes a component’s HA-ware scheduler (CHASE) to manage the deployments of carrier-grade cloud applications while maximizing their HA and satisfying the QoS requirements. Second, a Stochastic Petri Net (SPN) model is proposed to capture the stochastic characteristics of cloud services and quantify the expected availability offered by an application deployment. The SPN model is then associated with an extensible policy-driven cloud scoring system that integrates other cloud challenges (i.e. green and cost concerns) with HA objectives. The proposed HA-aware solutions are extended to include a live virtual machine migration model that provides a trade-off between the migration time and the downtime while maintaining HA objective. Furthermore, the thesis proposes a generic input template for cloud simulators, GITS, to facilitate the creation of cloud scenarios while ensuring reusability, simplicity, and portability. Finally, an availability-aware CloudSim extension, ACE, is proposed. ACE extends CloudSim simulator with failure injection, computational paths, repair, failover, load balancing, and other availability-based modules

    Reliability-Oriented Design of Vehicle Electric Propulsion System Based on the Multilevel Hierarchical Reliability Model

    Get PDF
    This chapter describes a methodology of evaluation of the various sustainability indicators, such as reliability, availability, fault tolerance, and reliability-associated cost of the electric propulsion systems, based on a multilevel hierarchical reliability model (MLHRM) of the life cycles of electric vehicles. Considering that the vehicle propulsion systems are safety-critical systems, to each of their components, the strict requirements on reliability indices are imposed. The practical application of the proposed technique for reliability-oriented development of the icebreaking ship’s electric propulsion system and the results of computation are presented. The opportunities of improvement of reliability and fault tolerance are investigated. The results of the study, allowing creating highly reliable electric vehicles and choosing the most appropriate traction electric drive design, are discussed
    • …
    corecore