266 research outputs found

    A quadratic upper bound on the size of a synchronizing word in one-cluster automata

    Get PDF
    International audienceČerný's conjecture asserts the existence of a synchronizing word of length at most (n-1)² for any synchronized n-state deterministic automaton. We prove a quadratic upper bound on the length of a synchronizing word for any synchronized n-state deterministic automaton satisfying the following additional property: there is a letter a such that for any pair of states p, q, one has p*ar = q*as for some integers r, s (for a state p and a word w, we denote by p*w the state reached from p by the path labeled w). As a consequence, we show that for any finite synchronized prefix code with an n-state decoder, there is a synchronizing word of length O(n²). This applies in particular to Huffman codes

    A Quadratic Upper Bound on the Size of a Synchronizing Word in One-Cluster Automata

    Full text link
    Černý's conjecture asserts the existence of a synchronizing word of length at most (n - 1)2 for any synchronized n-state deterministic automaton. We prove a quadratic upper bound on the length of a synchronizing word for any synchronized n-state deterministic automaton satisfying the following additional property: there is a letter a such that for any pair of states p, q, one has p·ar = q·as for some integers r, s (for a state p and a word w, we denote by p·w the state reached from p by the path labeled w). As a consequence, we show that for any finite synchronized prefix code with an n-state decoder, there is a synchronizing word of length O(n2). This applies in particular to Huffman codes. © 2011 World Scientific Publishing Company

    Synchronizing Automata on Quasi Eulerian Digraph

    Full text link
    In 1964 \v{C}ern\'{y} conjectured that each nn-state synchronizing automaton posesses a reset word of length at most (n1)2(n-1)^2. From the other side the best known upper bound on the reset length (minimum length of reset words) is cubic in nn. Thus the main problem here is to prove quadratic (in nn) upper bounds. Since 1964, this problem has been solved for few special classes of \sa. One of this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In this paper we introduce a new approach to prove quadratic upper bounds and explain it in terms of Markov chains and Perron-Frobenius theories. Using this approach we obtain a quadratic upper bound for a generalization of Eulerian automata.Comment: 8 pages, 1 figur

    The averaging trick and the Cerny conjecture

    Full text link
    The results of several papers concerning the \v{C}ern\'y conjecture are deduced as consequences of a simple idea that I call the averaging trick. This idea is implicitly used in the literature, but no attempt was made to formalize the proof scheme axiomatically. Instead, authors axiomatized classes of automata to which it applies

    Preimage problems for deterministic finite automata

    Full text link
    Given a subset of states SS of a deterministic finite automaton and a word ww, the preimage is the subset of all states mapped to a state in SS by the action of ww. We study three natural problems concerning words giving certain preimages. The first problem is whether, for a given subset, there exists a word \emph{extending} the subset (giving a larger preimage). The second problem is whether there exists a \emph{totally extending} word (giving the whole set of states as a preimage)---equivalently, whether there exists an \emph{avoiding} word for the complementary subset. The third problem is whether there exists a \emph{resizing} word. We also consider variants where the length of the word is upper bounded, where the size of the given subset is restricted, and where the automaton is strongly connected, synchronizing, or binary. We conclude with a summary of the complexities in all combinations of the cases
    corecore