5 research outputs found

    Parikh Image of Pushdown Automata

    Full text link
    We compare pushdown automata (PDAs for short) against other representations. First, we show that there is a family of PDAs over a unary alphabet with nn states and p≥2n+4p \geq 2n + 4 stack symbols that accepts one single long word for which every equivalent context-free grammar needs Ω(n2(p−2n−4))\Omega(n^2(p-2n-4)) variables. This family shows that the classical algorithm for converting a PDA to an equivalent context-free grammar is optimal even when the alphabet is unary. Moreover, we observe that language equivalence and Parikh equivalence, which ignores the ordering between symbols, coincide for this family. We conclude that, when assuming this weaker equivalence, the conversion algorithm is also optimal. Second, Parikh's theorem motivates the comparison of PDAs against finite state automata. In particular, the same family of unary PDAs gives a lower bound on the number of states of every Parikh-equivalent finite state automaton. Finally, we look into the case of unary deterministic PDAs. We show a new construction converting a unary deterministic PDA into an equivalent context-free grammar that achieves best known bounds.Comment: 17 pages, 2 figure

    Generating All Permutations by Context-Free Grammars in Greibach Normal Form

    Get PDF
    We consider context-free grammars GnG_n in Greibach normal form and, particularly, in Greibach mm-form (m=1,2m=1,2) which generates the finite language LnL_n of all n!n! strings that are permutations of nn different symbols (n≥1n\geq 1). These grammars are investigated with respect to their descriptional complexity, i.e., we determine the number of nonterminal symbols and the number of production rules of GnG_n as functions of nn. As in the case of Chomsky normal form these descriptional complexity measures grow faster than any polynomial function

    Probabilistic Parsing Strategies

    Full text link
    We present new results on the relation between purely symbolic context-free parsing strategies and their probabilistic counter-parts. Such parsing strategies are seen as constructions of push-down devices from grammars. We show that preservation of probability distribution is possible under two conditions, viz. the correct-prefix property and the property of strong predictiveness. These results generalize existing results in the literature that were obtained by considering parsing strategies in isolation. From our general results we also derive negative results on so-called generalized LR parsing.Comment: 36 pages, 1 figur

    Probabilistic parsing strategies.

    Get PDF
    Abstract. We present new results on the relation between purely symbolic context-free parsing strategies and their probabilistic counterparts. Such parsing strategies are seen as constructions of pushdown devices from grammars. We show that preservation of probability distribution is possible under two conditions, viz. the correct-prefix property and the property of strong predictiveness. These results generalize existing results in the literature that were obtained by considering parsing strategies in isolation. From our general results, we also derive negative results on so-called generalized LR parsing
    corecore