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Abstract. We present new results on the relation between purely symbolic context-free parsing strate-
gies and their probabilistic counterparts. Such parsing strategies are seen as constructions of push-
down devices from grammars. We show that preservation of probability distribution is possible under
two conditions, viz. the correct-prefix property and the property of strong predictiveness. These re-
sults generalize existing results in the literature that were obtained by considering parsing strategies
in isolation. From our general results, we also derive negative results on so-called generalized LR
parsing.
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1. Introduction

Context-free grammars and push-down automata are two equivalent formalisms to
describe context-free languages. While a context-free grammar can be thought of
as a purely declarative specification, a push-down automaton is considered to be
an operational specification that determines which steps are performed for a given
string in the process of deciding its membership of the language. By a parsing
strategy, we mean a mapping from context-free grammars to equivalent push-down
automata, such that some specific conditions are observed.
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This article deals with the probabilistic extensions of context-free grammars and
push-down automata, that is, probabilistic context-free grammars [Santos 1972;
Booth and Thompson 1973] and probabilistic push-down automata [Santos 1972;
Santos 1976; Tendeau 1995; Abney et al. 1999]. These formalisms are obtained
by adding probabilities to the rules and transitions of context-free grammars and
push-down automata, respectively. More specifically, we will investigate the prob-
lem of “extending” parsing strategies to probabilistic parsing strategies. These are
mappings from probabilistic context-free grammars to probabilistic push-down au-
tomata that preserve the induced probability distributions on the generated/accepted
languages. Two of the main results presented in this article can be stated as follows:

—No parsing strategy that lacks the correct-prefix property (CPP) can be extended
to become a probabilistic parsing strategy.

—All parsing strategies that possess the correct-prefix property and the strong
predictiveness property (SPP) can be extended to become probabilistic parsing
strategies.

The above results generalize previous findings reported by Tendeau [1995], Tendeau
[1997] and Abney et al. [1999], where only a few specific parsing strategies were
considered in isolation. Our findings also have important implications for well-
known parsing strategies such as generalized LR parsing, henceforth simply called
“LR parsing”.1 LR parsing has the CPP, but lacks the SPP, and as we will show, LR
parsing cannot be extended to become a probabilistic parsing strategy.

In the last decade, widespread interest in probabilistic parsing techniques has
arisen in the area of natural language processing [Charniak 1993; Manning and
Schütze 1999; Jurafsky and Martin 2000]. This is motivated by the fact that natural
language sentences are generally ambiguous, and natural language software needs
to be able to distinguish the more probable derivations of a sentence from the
less probable ones. This can be achieved by letting the parsing process assign a
probability to each parse, on the basis of a probabilistic grammar. In a typical
application, the software may select those derivations for further processing that
have been given the highest probabilities, and discard the others. The success of
this approach relies on the accuracy of the probabilistic model expressed by the
probabilistic grammar, that is, whether the probabilities assigned to derivations
accurately reflect the “true” probabilities in the domain at hand.

Probabilities are often estimated on the basis of a corpus, that is, a collection of
sentences. The sentences in a corpus may be annotated with various kinds of infor-
mation. One kind of annotation that is relevant for our discussion is the preferred
derivation for each sentence. Given a corpus with derivations, one may estimate
probabilities of rules by their relative frequencies in the corpus. If a corpus is unan-
notated, more general techniques of maximum-likelihood estimation can be used to
estimate the probabilities of rules. (See Sánchez and Benedı́ [1997], Chi and Geman
[1998] and Chi [1999] for some formal properties of types of maximum-likelihood
estimation.)

The motivation for studying probabilistic models other than those obtained by
attaching probabilities to given context-free grammars is the observation that more

1 Generalized (or nondeterministic) LR parsing allows for more than one action for a given LR state
and input symbol.
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accurate models can be obtained by conditioning probabilities on “context infor-
mation” beyond single nonterminals [Chitrao and Grishman 1990; Charniak and
Carroll 1994]. Furthermore, it has been observed that conditioning on certain types
of context information can be achieved by first translating context-free grammars to
push-down automata, according to some parsing strategy, and then attaching proba-
bilities to the transitions thereof [Sornlertlamvanich et al. 1999; Roark and Johnson
1999; Manning and Carpenter 2000]. More concretely, for some parsing strategies,
the set of models that can be obtained by attaching probabilities to a push-down au-
tomaton constructed from a context-free grammar may include models that cannot
be obtained by attaching probabilities to that grammar.

An implicit assumption of this methodology is that, conversely, any probabilistic
model that can be obtained from a grammar can also be obtained from the associated
push-down automaton, or in other words, the push-down automaton is at least as
powerful as the grammar in terms of the set the potential models. If a parsing strategy
does not satisfy this property, and if some potential models are lost in the mapping
from the grammar to the push-down automaton, then this means that, in some cases,
the strategy may lead to less rather than more accurate models. That LR parsing
cannot be extended to become a probabilistic parsing strategy, as we mentioned
above, means that the above property is not satisfied by this parsing strategy. This
is contrary to what is suggested by some publications on probabilistic LR parsing,
such as Briscoe and Carroll [1993] and Inui et al. [2000], which fail to observe that
LR parsers may sometimes lead to less accurate models than the grammars from
which they were constructed.

Some studies, such as Collins [1997], Chelba and Jelinek [1998], Charniak
[2001] and Van Uytsel and Van Compernolle [2005], propose lexicalized prob-
abilistic context-free grammars, that is, probabilistic models based on context-free
grammars in which probabilities heavily rely on the terminal elements from input
strings. Even if this article does not specifically deal with lexicalization, much
of what we discuss pertains to lexicalized probabilistic context-free grammars
as well.

The article is organized as follows: After giving standard definitions in Section 2,
we give our formal definition of “parsing strategy” in Section 3. We also define what
it means to extend a parsing strategy to become a probabilistic parsing strategy. The
CPP and the SPP are defined in Sections 4 and 5, where we also discuss how these
properties relate to the question of which strategies can be extended to become
probabilistic. Sections 6 and 7 provide examples of parsing strategies with and
without the SPP. The examples without the SPP, most notably LR parsing, are
shown not to be extendible to become probabilistic. A wider notion of extending a
strategy to become probabilistic is provided by Section 8. We show that even under
this wider notion, LR parsing cannot be extended to become probabilistic. Sec-
tion 9 presents an application that concerns prefix probabilities. We end this paper
with conclusions.

2. Preliminaries

A context-free grammar (CFG) G is a 4-tuple (�, N , S, R), where � is a finite
set of terminals, called the alphabet, N is a finite set of nonterminals, including
the start symbol S, and R is a finite set of rules, each of the form A → α, where
A ∈ N and α ∈ (� ∪ N )∗. Without loss of generality, we assume that there is only
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one rule S → σ with the start symbol in the left-hand side, and furthermore that
σ �= ε, where ε denotes the empty string.

For a fixed CFG G, we define the relation ⇒ on triples consisting of two strings
α, β ∈ (� ∪ N )∗ and a rule π ∈ R by: α

π⇒ β if and only if α is of the form w Aδ
and β is of the form wγ δ, for some w ∈ �∗ and δ ∈ (� ∪ N )∗, and π = (A → γ ).
A left-most derivation is a string d = π1 · · · πm , m ≥ 0, such that S π1⇒ · · · πm⇒ α,
for some α ∈ (� ∪ N )∗. We will identify a left-most derivation with the sequence
of strings over � ∪ N that arise in that derivation. In the remainder of this article,
we will let the term “derivation” refer to “left-most derivation”, unless specified
otherwise.

A derivation d = π1 · · · πm , m ≥ 0, such that S π1⇒ · · · πm⇒ w where w ∈ �∗
will be called a complete derivation; we also say that d is a derivation of w . By
subderivation we mean a substring of a complete derivation of the form d =
π1 · · · πm , m ≥ 0, such that A π1⇒ · · · πm⇒ w for some A and w .

We write α ⇒∗ β or α ⇒+ β to denote the existence of a string π1 · · · πm such
that α

π1⇒ · · · πm⇒ β, with m ≥ 0 or m > 0, respectively. We say a CFG is acyclic if
A ⇒+ A does not hold for any A ∈ N .

For a CFG G we define the language L(G) it generates as the set of strings w
such that there is at least one derivation of w . We say a CFG is reduced if for each
rule π ∈ R there is a complete derivation in which it occurs.

A probabilistic context-free grammar (PCFG) is a pair (G, p) consisting of a
CFG G = (�, N , S, R) and a probability function p from R to real numbers in
the interval [0, 1]. We say a PCFG is proper if �π=(A→γ )∈R p(π ) = 1 for each
A ∈ N . PCFGs that arise from common methods of corpus linguistics, such as
relative frequency estimation [Chi and Geman 1998], are proper by construction.

For a PCFG (G, p), we define the probability p(d) of a string d = π1 · · · πm ∈ R∗
as

∏m
i=1 p(πi ); we will in particular consider the probabilities of derivations d.

The probability p(w) of a string w ∈ �∗ as defined by (G, p) is the sum of the
probabilities of all derivations of that string. We say a PCFG (G, p) is consistent if
�w∈�∗ p(w) = 1.

In this article, we will mainly consider push-down transducers rather than push-
down automata. Push-down transducers not only compute derivations of the gram-
mar while processing an input string, but they also explicitly produce output strings
from which these derivations can be obtained. We use transducers for two reasons.
First, constraints on the output strings allow us to restrict our attention to “reason-
able” parsing strategies. Those strategies that cannot be formalized within these
constraints are unlikely to be of practical interest. Second, mappings from input
strings to derivations, such as those realized by push-down devices, turn out to be
a very powerful abstraction and allow direct proofs of several general results.

Contrary to many textbooks, our push-down devices do not possess states next to
stack symbols. This is without loss of generality, since states can be encoded into
the stack symbols, given the types of transitions that we allow. Thus, a push-down
transducer (PDT) A is a 6-tuple (�1, �2, Q, Xinit, Xfinal, 
), where �1 is the input
alphabet, �2 is the output alphabet, Q is a finite set of stack symbols including
the initial stack symbol Xinit and the final stack symbol Xfinal, and 
 is the set of
transitions. Each transition can have one of the following three forms: X 
→ XY (a
push transition), YX 
→ Z (a pop transition), or X

x,y
→ Y (a swap transition); here
X , Y , Z ∈ Q, x ∈ �1 ∪ {ε} and y ∈ �∗

2 . Note that in our notation, stacks grow
from left to right, that is, the top-most stack symbol will be found at the right end.
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Without loss of generality, we assume that any PDT is such that, for a given
stack symbol X �= Xfinal, there are either one or more push transitions X 
→ XY,
or one or more pop transitions YX 
→ Z , or one or more swap transitions X

x,y
→ Y ,
but no combinations of different types of transitions. If a PDT does not satisfy this
normal form, it can easily be brought in this form by introducing for each stack
symbol X three new stack symbols Xpush, Xpop and Xswap and new swap transitions
X

ε,ε
→ Xpush, X
ε,ε
→ Xpop and X

ε,ε
→ Xswap. In each existing transition that operates on
top-of-stack X , we then replace X by one from Xpush, Xpop or Xswap, depending on
the type of that transition. We also assume that Xfinal does not occur in the left-hand
side of a transition, again without loss of generality.

A configuration of a PDT is a triple (α, w, v), where α ∈ Q∗ is a stack, w ∈ �∗
1

is the remaining input, and v ∈ �∗
2 is the output generated so far. For a fixed

PDT A, we define the relation � on triples consisting of two configurations and a
transition τ by: (γα, xw, v)

τ

� (γβ, w, vy) if and only if τ is of the form α 
→ β,

where x = y = ε, or of the form α
x,y
→ β. A computation on an input string w is a

string c = τ1 · · · τm , m ≥ 0, such that (Xinit, w, ε)
τ1� · · ·

τm� (α, w ′, v). A complete
computation on a string w is a computation with w ′ = ε and α = Xfinal. The string
v is called the output of the computation c, and is denoted by out(c).

We will identify a computation with the sequence of configurations that arise
in that computation, where the first configuration is determined by the context.
We also write (α, w, v) �∗ (β, w ′, v ′) or (α, w, v)

c
�∗ (β, w ′, v ′), for α, β ∈ Q∗,

w, w ′ ∈ �∗
1 and v, v ′ ∈ �∗

2 , to indicate that (β, w ′, v ′) can be obtained from
(α, w, v) by applying a sequence c of zero or more transitions; we refer to such a
sequence c as a subcomputation. The function out is extended to subcomputations
in the natural way.

For a PDT A, we define the language L(A) it accepts as the set of strings w such
that there is at least one complete computation on w . We say a PDT is reduced if
each transition τ ∈ 
 occurs in some complete computation.

A probabilistic push-down transducer (PPDT) is a pair (A, p) consisting of a
PDT A and a probability function p from the set 
 of transitions of A to real
numbers in the interval [0, 1]. We say a PPDT (A, p) is proper if

—�τ=(X 
→XY)∈
 p(τ ) = 1 for each X ∈ Q such that there is at least one transition
X 
→ XY, Y ∈ Q;

—�
τ=(X

x,y
→Y )∈

p(τ ) = 1 for each X ∈ Q such that there is at least one transition

X
x,y
→ Y , x ∈ �1 ∪ {ε}, y ∈ �∗

2 , Y ∈ Q; and

—�τ=(Y X 
→Z )∈
 p(τ ) = 1, for each X, Y ∈ Q such that there is at least one
transition Y X 
→ Z , Z ∈ Q.

As in the case of PCFGs, we may expect a PPDT to be proper if its probability
function p was obtained through a common method of corpus linguistics.

For a PPDT (A, p), we define the probability p(c) of a (sub)computation c =
τ1 · · · τm as

∏m
i=1 p(τi ). The probability p(w) of a string w as defined by (A, p) is

the sum of the probabilities of all complete computations on that string. We say a
PPDT (A, p) is consistent if �w∈�∗ p(w) = 1.

We say a PCFG (G, p) is reduced if G is reduced, and we say a PPDT (A, p) is
reduced if A is reduced.
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3. Parsing Strategies

The term “parsing strategy” is often used informally to refer to a class of parsing
algorithms that behave similarly in some way. In this article, we assign a formal
meaning to this term, relying on the observation by Lang [1974] and Billot and
Lang [1989] that many parsing algorithms for CFGs can be described in two steps.
The first is a construction of push-down devices from CFGs, and the second is
a method for handling nondeterminism (e.g., backtracking or dynamic program-
ming). Parsing algorithms that handle nondeterminism in different ways but apply
the same construction of push-down devices from CFGs are seen as realizations of
the same parsing strategy.

Thus, we define a parsing strategy to be a function S that maps a reduced CFG
G = (�1, N , S, R) to a pair S(G) = (A, f ) consisting of a reduced PDT A = (�1,
�2, Q, Xinit, Xfinal, 
), and a function f that maps a subset of �∗

2 to a subset of
R∗, with the following properties:

— R ⊆ �2.

—For each string w ∈ �∗
1 and each complete computation c on w , f (out(c)) = d

is a derivation of w . Furthermore, each symbol from R occurs as often in out(c)
as it occurs in d.

—Conversely, for each string w ∈ �∗
1 and each derivation d of w , there is precisely

one complete computation c on w such that f (out(c)) = d.

If c is a complete computation, we will write f (c) to denote f (out(c)). The condi-
tions above then imply that f is a bijection from complete computations to complete
derivations.

Note that output strings of (complete) computations may contain symbols that
are not in R, and the symbols that are in R may occur in a different order in v
than in f (v) = d. The purpose of the symbols in �2 − R is to help this process
of reordering of symbols in R. For a string v ∈ �∗

2 we let v refer to the maximal
subsequence of symbols from v that belong to R, or in other words, string v is
obtained by erasing from v all occurrences of symbols from �2 − R.

A probabilistic parsing strategy is defined to be a functionS that maps a reduced,
proper and consistent PCFG (G, pG) to a triple S(G, pG) = (A, pA, f ), where
(A, pA) is a reduced, proper and consistent PPDT, with the same properties as a
(non-probabilistic) parsing strategy, and in addition:

—For each complete derivation d and each complete computation c such that
f (c) = d, pG(d) equals pA(c).

In other words, a complete computation has the same probability as the complete
derivation that it is mapped to by function f . An implication of this property is
that for each string w ∈ �∗

1 , the probabilities assigned to that string by (G, pG) and
(A, pA) are equal.

We say that probabilistic parsing strategy S ′ is an extension of parsing strategy
S if for each reduced CFG G and probability function pG we have S(G) = (A, f )
if and only if S ′(G, pG) = (A, pA, f ) for some pA.

In the following sections, we will investigate which parsing strategies can be
extended to become probabilistic parsing strategies.
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4. Correct-Prefix Property

For a given PDT, we say a computation c is dead if (Xinit, w1, ε)
c

�∗ (α, ε, v1), for
some α ∈ Q∗, w1 ∈ �∗

1 and v1 ∈ �∗
2 , and there are no w2 ∈ �∗

1 and v2 ∈ �∗
2 such

that (α, w2, ε) �∗ (Xfinal, ε, v2). Informally, a dead computation is a computation
that cannot be continued to become a complete computation.

We say that a PDT has the correct-prefix property (CPP) if it does not allow
any dead computations. We say that a parsing strategy has the CPP if it maps each
reduced CFG to a PDT that has the CPP.

In this section, we show that the correct-prefix property is a necessary condition
for extending a parsing strategy to a probabilistic parsing strategy. For this, we need
two lemmas.

LEMMA 4.1. For each reduced CFG G, there is a probability function pG such
that PCFG (G, pG) is proper and consistent, and pG(d) > 0 for all complete
derivations d.

PROOF. Since G is reduced, there is a finite set D consisting of complete deriva-
tions d, such that for each rule π in G there is at least one d ∈ D in which π occurs.
Let nπ,d be the number of occurrences of rule π in derivation d ∈ D, and let nπ

be �d∈D nπ,d , the total number of occurrences of π in D. Let n A be the sum of
nπ for all rules π with A in the left-hand side. A probability function pG can be
defined through ‘maximum-likelihood estimation’ such that pG(π ) = nπ

n A
for each

rule π = A → α.
For all nonterminals A, �π=A→α pG(π ) = �π=A→α

nπ

n A
= n A

n A
= 1, which means that

the PCFG (G, pG) is proper. Furthermore, Chi and Geman [1998] have shown that a
PCFG (G, pG) is consistent if pG was obtained by maximum-likelihood estimation
using a set of derivations. Finally, since nπ > 0 for each π , also pG(π ) > 0 for
each π , and pG(d) > 0 for all complete derivations d.

We say a computation is a shortest dead computation if it is dead and none of its
proper prefixes is dead. Note that each dead computation has a unique prefix that
is a shortest dead computation. For a PDT A, let TA be the union of the set of all
complete computations and the set of all shortest dead computations.

LEMMA 4.2. For each proper PPDT (A, pA), �c∈TA pA(c) ≤ 1.

PROOF. The proof is a trivial variant of the proof that for a proper PCFG (G, pG),
the sum of pG(d) for all derivations d cannot exceed 1, which is shown by Booth
and Thompson [1973].

From this, the main result of this section follows.

THEOREM 4.3. A parsing strategy that lacks the CPP cannot be extended to
become a probabilistic parsing strategy.

PROOF. Take a parsing strategy S that does not have the CPP. Then there is a
reduced CFG G = (�1, N , S, R), with S(G) = (A, f ) for some A and f , and a
shortest dead computation c allowed by A.

It follows from Lemma 4.1 that there is a probability function pG such that
(G, pG) is a proper and consistent PCFG and pG(d) > 0 for all complete derivations
d . Assume we also have a probability function pA such that (A, pA) is a proper



Probabilistic Parsing Strategies 413

and consistent PPDT and pA(c′) = pG( f (c′)) for each complete computation c′.
Since A is reduced, each transition τ must occur in some complete computation
c′. Furthermore, for each complete computation c′ there is a complete derivation
d such that f (c′) = d, and pA(c′) = pG(d) > 0. Therefore, pA(τ ) > 0 for each
transition τ , and pA(c) > 0, where c is the above-mentioned dead computation.

Due to Lemma 4.2, 1 ≥ �c′∈TA pA(c′) ≥ �w∈�∗
1

pA(w) + pA(c) >
�w∈�∗

1
pA(w) = �w∈�∗

1
pG(w). This is in contradiction with the consistency of

(G, pG). Hence, a probability function pA with the properties we required above
cannot exist, and therefore S cannot be extended to become a probabilistic parsing
strategy.

5. Strong Predictiveness

For a fixed PDT, we define the binary relation � on stack symbols by: Y � Y ′ if and
only if (Y, w, ε) �∗ (Y ′, ε, v) for some w ∈ �∗

1 and v ∈ �∗
2 . In other words, some

subcomputation may start with stack Y and end with stack Y ′. Note that all stacks
that occur in such a subcomputation must have height of 1 or more.

We say that a PDT has the strong predictiveness property (SPP) if the existence
of three transitions X 
→ XY, XY1 
→ Z1 and XY2 
→ Z2 such that Y � Y1 and
Y � Y2 implies Z1 = Z2. Informally, this means that when a subcomputation starts
with some stack α and some push transition τ , then solely on the basis of τ we can
uniquely determine what stack symbol Z1 = Z2 will be on top of the stack in the
first configuration with stack height equal to |α|. Another way of looking at it is
that no information may flow from higher stack elements to lower stack elements
that was not already predicted before these higher stack elements came into being,
hence the term “strong predictiveness”.2

We say that a parsing strategy has the SPP if it maps each reduced CFG to a PDT
with the SPP.

In the previous section it was shown that we may restrict ourselves to parsing
strategies that have the CPP. Here we show that if, in addition, a parsing strategy has
the SPP, then it can always be extended to become a probabilistic parsing strategy.

THEOREM 5.1. Any parsing strategy that has the CPP and the SPP can be
extended to become a probabilistic parsing strategy.

PROOF. Take a parsing strategy S that has the CPP and the SPP, and take a
reduced PCFG (G, pG), where G = (�1, N , S, R), and let S(G) = (A, f ), for
some PDT A and function f . We will show that there is a probability function pA
such that (A, pA) is a PPDT and pA(c) = pG( f (c)) for all complete computations c.

For each stack symbol X , consider the set of transitions that are applicable with
top-of-stack X . Remember that our normal form ensures that all such transitions
are of the same type. Suppose this set consists of m swap transitions τi = X

xi ,yi
→ Yi ,

1 ≤ i ≤ m. For each i , consider all subcomputations of the form (X, xi w, ε)
τi�

(Yi , w, yi ) �∗ (Y ′, ε, v) such that there is at least one pop transition of the form

2 There is a property of push-down devices called faiblement prédictif (weakly predictive) [Villemonte
de la Clergerie 1993]. Contrary to what this name may suggest however, this property is incomparable
with the complement of our notion of SPP.
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ZY′ 
→ Z ′ or such that Y ′ = Xfinal, and define Lτi as the set of strings v output
by these subcomputations. We also define L X = ∪m

j=1 Lτ j , the set of all strings
output by subcomputations starting with top-of-stack X , and ending just before a
pop transition that leads to a stack with height smaller than that of the stack at the
beginning, or ending with the final stack symbol Xfinal.

Now define for each i (1 ≤ i ≤ m):

pA(τi ) = �v∈Lτi
pG(v)

�v∈L X pG(v)
. (1)

In other words, the probability of a transition is the normalized probability of the
set of subcomputations starting with that transition, relating subcomputations with
fragments of derivations of the PCFG.

These definitions are well defined. Since A is reduced and has the CPP, the
sets Lτi are non-empty and thereby the denominator in the definition of pA(τi ) is
non-zero. Furthermore, �m

i=1 pA(τi ) is clearly 1.
Now suppose the set of transitions for X consists of m push transitions τi = X 
→

XYi , 1 ≤ i ≤ m. For each i , consider all subcomputations of the form (X, w, ε)
τi�

(XYi , w, ε) �∗ (X ′, ε, v) such that there is at least one pop transition of the form
ZX′ 
→ Z ′ or X ′ = Xfinal, and define Lτi , L X and pA(τi ) as we have done above for
the swap transitions.

Suppose the set of transitions for X consists of m pop transitions τi = Yi X 
→ Zi ,
1 ≤ i ≤ m. Define L X = {ε}, and pA(τi ) = 1 for each i . To see that this is
compatible with the condition of properness of PPDTs, note the following. Since
we may assume A is reduced, if Yi = Y j for some i and j with 1 ≤ i, j ≤ m, then
there is at least one transition Yi 
→ Yi X ′ for some X ′ such that X ′

� X . Due to the
SPP, Zi = Z j and therefore i = j .

Finally, we define L Xfinal = {ε}.
Take a subcomputation (X, w, ε)

c
�∗ (Y, ε, v) such that there is at least one pop

transition of the form ZY 
→ Y ′ or Y = Xfinal. Below, we will prove that:

pA(c) = pG(v)

�v ′∈L X pG(v ′)
. (2)

Since a complete computation c with output v is of this form, with X = Xinit and
Y = Xfinal, we obtain the result we required to prove Theorem 5.1, where D denotes
the set of all complete derivations of CFG G:

pA(c) = pG(v)

�v ′∈L Xinit
pG(v ′)

(3)

= pG( f (c))

�v ′∈L Xinit
pG( f (v ′))

(4)

= pG( f (c))

�d∈D pG(d)
(5)

= pG( f (c)). (6)

We have used two properties of f here. The first is that it preserves the frequencies
of symbols from R, if considered as a mapping from output strings to derivations.
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The second property is that it can be considered as bijection from complete compu-
tations to complete derivations. Lastly, we have used consistency of PCFG (G, pG),
meaning that �d∈D pG(d) = 1.

For the proof of (2), we proceed by induction on the length of c and distinguish
three cases.

Case 1. Consider a subcomputation c consisting of zero transitions, which nat-
urally has output v = ε, with only configuration (X, ε, ε), where there is at least
one pop transition of the form ZX 
→ Z ′ or X = Xfinal. We trivially have pA(c) =
1 and pG (v)

�v ′∈L X
pG (v ′)

= pG (ε)
�v ′∈{ε} pG (v ′)

= 1.

Case 2. Consider a subcomputation c = τi c′, where (X, xi w, ε)
τi� (Yi , w, yi )

c′

�∗
(Y ′, ε, yi v), such that there is at least one pop transition of the form ZY′ 
→ Z ′ or
Y ′ = Xfinal. The induction hypothesis states that:

pA(c′) = pG(v)

�v ′∈LYi
pG(v ′)

. (7)

If we combine this with the definition of pA, we obtain:

pA(c) = pA(τi ) · pA(c′) (8)

= �v ′∈Lτi
pG(v ′)

�v ′∈L X pG(v ′)
· pG(v)

�v ′∈LYi
pG(v ′)

(9)

= pG(yi ) · �v ′∈LYi
pG(v ′)

�v ′∈L X pG(v ′)
· pG(v)

�v ′∈LYi
pG(v ′)

(10)

= pG(yi ) · pG(v)

�v ′∈L X pG(v ′)
(11)

= pG(yi v)

�v ′∈L X pG(v ′)
. (12)

Case 3. Consider a subcomputation c of the form (X, w, ε)
τi� (XYi , w, ε) �∗

(X ′′, ε, v) such that there is at least one pop transition of the form ZX′′ 
→ Z ′ or
X ′′ = Xfinal. Subcomputation c can be decomposed in a unique way as c = τi c′τc′′,
consisting of an application of a push transition τi = X 
→ XYi , a subcomputation

(Yi , w1, ε)
c′

�∗ (Y ′, ε, v1), an application of a pop transition τ = XY ′ 
→ X ′
i , and a

subcomputation (X ′
i , w2, ε)

c′′

�∗ (X ′′, ε, v2), where w = w1w2 and v = v1v2. This
is visualized in Figure 1.

We can now use the induction hypothesis twice, resulting in:

pA(c′) = pG(v1)

�v ′
1∈LYi

pG(v ′
1)

(13)

and

pA(c′′) = pG(v2)

�v ′
2∈L X ′

i
pG(v ′

2)
. (14)
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FIG. 1. Development of the stack in the computation c = τi c′τc′′.

If we combine this with the definition of pA, we obtain:

pA(c) = pA(τi ) · pA(c′) · pA(τ ) · pA(c′′) (15)

= �v ′∈Lτi
pG(v ′)

�v ′∈L X pG(v ′)
· pG(v1)

�v ′
1∈LYi

pG(v ′
1)

· 1 · pG(v2)

�v ′
2∈L X ′

i
pG(v ′

2)
. (16)

Since A has the SPP, X ′
i is unique to τi and the output strings in Lτi are precisely

those that can be obtained by concatenating an output string in LYi and an output
string in L X ′

i
. Therefore �v ′∈Lτi

pG(v ′) =�v ′
1∈LYi

�v ′
2∈L X ′

i
pG(v ′

1v ′
2) =�v ′

1∈LYi
pG(v ′

1) ·
�v ′

2∈L X ′
i

pG(v ′
2), and

pA(c) = pG(v1) · pG(v2)

�v ′∈L X pG(v ′)
(17)

= pG(v1v2)

�v ′∈L X pG(v ′)
(18)

= pG(v)

�v ′∈L X pG(v ′)
. (19)

This concludes the proof.

Note that the definition of pA in the above proof relies on the strings output
by A. This is the main reason why we needed to consider push-down trans-
ducers rather than push-down automata (defined below). Now assume an ap-
propriate probability function pA has been found such that (A, pA) is a PPDT
that assigns the same probabilities to computations as the given PCFG as-
signs to the corresponding derivations, following the construction from the proof
above. Then the probabilities assigned to strings over the input alphabet are
also equal. We may subsequently ignore the output strings if the application at
hand merely requires probabilistic recognition rather than probabilistic transduc-
tion, or in other words, we may simplify push-down transducers to push-down
automata.

Formally, a push-down automaton (PDA) A is a 5-tuple (�, Q, Xinit, Xfinal, 
),
where � is the input alphabet, and Q, Xinit, Xfinal and 
 are as in the definition of
PDTs. Push and pop transitions are as before, but swap transitions are simplified
to the form X

x
→ Y , where x ∈ {ε} ∪ �. Computations are defined as in the case
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of PDTs, except that configurations are now pairs (α, w) whereas they were triples
(α, w, v) in the case of PDTs. A probabilistic push-down automaton (PPDA) is a
pair (A, pA), where A is a PDA and pA is a probability function subject to the same
constraints as in the case of PPDTs. Since the definitions of CPP and SPP for PDTs
did not refer to output strings, these notions carry over to PDAs in a straightforward
way.

We define the size of a CFG as
∑

(A→α)∈R |Aα|, the total number of occurrences
of terminals and nonterminals in the set of rules. Similarly, we define the size of
a PDA as

∑
(α 
→β)∈
 |αβ| + ∑

(X
x
→Y )∈


|XxY|, the total number of occurrences of
stack symbols and terminals in the set of transitions.

Let A = (�, Q, Xinit, Xfinal, 
) be a PDA with both CPP and SPP. We will now
show that we can construct an equivalent CFG G = (�, Q, Xinit, R) with size linear
in the size of A. The rules of this grammar are the following.

—X → YZ for each transition X 
→ XY, where Z is the unique stack symbol such
that there is at least one transition XY′ 
→ Z with Y � Y ′;

—X → xY for each transition X
x
→ Y ;

—Y → ε for each stack symbol Y such that there is at least one transition XY 
→ Z
or such that Y = Xfinal.

It is easy to see that there exists a bijection from complete computations of A to
complete derivations of G, preserving the recognized/derived strings. Apart from
an additional derivation step by rule Xfinal → ε, the complete derivations also have
the same length as the corresponding complete computations.

The above construction can straightforwardly be extended to probabilistic PDAs
(PPDAs). Let (A, pA) be a PPDA with both CPP and SPP. Then we construct G as
above, and further define pG such that pG(π ) = pA(τ ) for rules π = X → YZ or
π = X → xY that we construct out of transitions τ = X 
→ XY or τ = X

x
→ Y ,
respectively, in the first two items above. We also define pG(Y → ε) = 1 for rules
Y → ε obtained in the third item above. If (A, pA) is reduced, proper and consistent
then so is (G, pG).

This leads to the observation that parsing strategies with the CPP and the SPP
as well as their probabilistic extensions can also be described as grammar trans-
formations, as follows. A given (P)CFG is mapped to an equivalent (P)PDT by a
(probabilistic) parsing strategy. By ignoring the output components of swap transi-
tions we obtain a (P)PDA, which can be mapped to an equivalent (P)CFG as shown
above. This observation gives rise to an extension with probabilities of the work on
covers by Nijholt [1980] and Leermakers [1989].

It has been shown by Goldstine et al. [1982] that there is an infinite family of
languages with the following property. The sizes of the smallest CFGs generating
those languages are at least quadratically larger than the sizes of the smallest equiv-
alent PDAs. Note that this increase in size cannot occur if PDAs satisfy both the
CPP and the SPP, as we have shown above.

It is always possible to transform a PDA with the CPP but without the SPP
to an equivalent PDA with both CPP and SPP, by a construction that increases
the size of the PDA considerably (at least quadratically, in the light of the above
construction and Goldstine et al. [1982]). However, such transformations in general
do not preserve parsing strategies and therefore are of minor interest to the issues
discussed in this paper.
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The simple relationship between PDAs with both CPP and SPP on the one hand
and CFGs on the other can be used to carry over algorithms originally designed
for CFGs to PDAs or PDTs. One such application is the evaluation of the right-
hand side of Eq. (1) in the proof of Theorem 5.1. Both the numerator and the
denominator involve potentially infinite sets of subcomputations, and therefore it is
not immediately clear that the proof is constructive. However, there are published
algorithms to compute, for a given PCFG (G ′, pG′) that is not necessarily proper and a
given nonterminal A, the expression �w∈�∗ pG′(A ⇒∗ w), or rather, to approximate
it with arbitrary precision; see Booth and Thompson [1973] and Stolcke [1995].
This can be used to compute, for example �v∈L X pG(v) in Eq. (1), as follows.

The first step is to map the PDT to a CFG G ′ as shown above. We then define
a function pG′ that assigns probability 1 to all rules that we construct out of push
and pop transitions. We also let pG′ assign probability pG(y) to a rule X → xY that
we construct out of a scan transition X

x,y
→ Y . It is easy to see that, for any stack
symbol X , we have �v∈L X pG(v) = �w∈�∗

1
pG′(X ⇒∗ w). This allows our problem

on the computations of probabilities in the right-hand side of Eq. (1) to be reduced
to a problem on PCFGs, which can be solved by existing algorithms as discussed
above.

The same idea can be used to show that determination of pA by Eq. (1) can
be seen as an application of PCFG renormalization [Abney et al. 1999; Chi 1999;
Nederhof and Satta 2003], which allows an alternative proof of Theorem 5.1, as
shown by Nederhof and Satta [2004b]. Our proof seems more insightful however,
especially with regard to the reason why some parsing strategies without the SPP
cannot be extended to become probabilistic, as we will show in Section 7.

6. Parsing Strategies with SPP

Many well-known parsing strategies with the CPP also have the SPP, such as top-
down parsing [Harrison 1978], left-corner parsing [Rosenkrantz and Lewis II 1970]
and PLR parsing [Soisalon-Soininen and Ukkonen 1979], the first two of which we
will define explicitly here, whereas of the third we will merely present a sketch. A
fourth strategy that we will discuss is a combination of left-corner and top-down
parsing, with special computational properties.

In order to simplify the presentation, we allow a new type of transition, without
increasing the power of PDTs, viz. a combined push/swap transition of the form
X

x,y
→ XY. Such a transition can be seen as short-hand for two transitions, the first of
the form X 
→ XYx,y , where Yx,y is a new symbol not already in Q, and the second
of the form Yx,y

x,y
→ Y .
The first strategy we discuss is top-down parsing. For a fixed CFG grammar

G = (�, N , S, R), we define STD(G) = (A, f ). Here A = (�, R, Q, [S → • σ ],
[S → σ •], 
), where Q = {[A → α • β] | (A → αβ) ∈ R}; these ‘dotted rules’
are well-known from Knuth [1965] and Earley [1970]. The transitions in 
 are:

—[A → α • aβ]
a,ε
→ [A → αa • β] for each rule A → αaβ;

—[A → α • Bβ]
ε,π
→ [A → α • Bβ] [B → • γ ] for each pair of rules A → αBβ

and π = B → γ ;

—[A → α • Bβ] [B → γ •] 
→ [A → αB • β].
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The function f is the identity function on strings over R. If seen as a function on
computations, then f is a bijection from complete computations of A to complete
derivations of G, as required by the definition of “parsing strategy”.

If G is reduced, thenA clearly has the CPP. That it also has the SPP can be argued
as follows. Let us first remark that if [A → α • β] � X for some stack symbols
[A → α • β] and X , then X must be of the form [A → αγ • δ], for some γ and
δ such that γ δ = β. Now, if there are three transitions X 
→ XY, XY1 
→ Z1 and
XY2 
→ Z2 such that Y � Y1 and Y � Y2, then X must be of the form [A → α • Bβ]
and Y of the form [B → • γ ] (strictly speaking [B → • γ ]ε,π ), Y1 and Y2 must
both be [B → γ •], and Z1 and Z2 must both be [A → αB • β]. Hence the SPP
is satisfied.

SinceSTD has both CPP and SPP, we may apply Theorem 5.1 to conclude thatSTD

can be extended to become a probabilistic parsing strategy. A direct construction
of a top-down PPDT from a PCFG (G, pG) is obtained by extending the above
construction such that probability 1 is assigned to all transitions produced by the
first and third items, and probability pG(π ) is assigned to transitions produced by
the second item.

The second strategy we discuss is left-corner (LC) parsing [Rosenkrantz and
Lewis II 1970]. For a fixed CFG G = (�, N , S, R), we define the binary re-
lation � over � ∪ N by: X � A if and only if there is an α ∈ (� ∪ N )∗ such
that (A → Xα) ∈ R, where X ∈ � ∪ N . We define the binary relation � ∗
to be the reflexive and transitive closure of � . This implies that a � ∗a for all
a ∈ �.

We now define SLC(G) = (A, f ). Here A = (�, R ∪ {�}, Q, [S → • σ ],
[S → σ •], 
), where Q contains stack symbols of the form [A → α • β]
where (A → αβ) ∈ R such that α �= ε ∨ A = S, and stack symbols of the
form [A → α • Yβ; X ] where (A → αYβ) ∈ R and X, Y ∈ � ∪ N such that
α �= ε ∨ A = S and X � ∗Y . The latter type of stack symbol indicates that left corner
X of goal Y in the right-hand side of rule A → αYβ has just been recognized. The
transitions in 
 are:

—[A → α • Yβ]
a,ε
→ [A → α • Yβ; a] for each rule A → αYβ and a ∈ � such

that α �= ε ∨ A = S and a � ∗Y ;

—[A → α • Bβ]
ε,π
→ [A → α • Bβ; C] for each pair of rules A → αBβ and

π = C → ε such that α �= ε ∨ A = S and C � ∗ B;

—[A → α • Bβ; X ]
ε,π
→ [A → α • Bβ; X ] [C → X • γ ] for each pair of rules

A → αBβ and π = C → Xγ such that α �= ε ∨ A = S and C � ∗ B;
—[A → α • Bβ; X ] [C → Xγ •] 
→ [A → α • Bβ; C] for each pair of rules

A → αBβ and C → Xγ such that α �= ε ∨ A = S and C � ∗ B;

—[A → α • Yβ; Y ]
ε,�
→ [A → αY • β] for each rule A → αYβ such that α �=

ε ∨ A = S.

The function f has to rearrange an output string to obtain a complete derivation.
To make this possible, the output alphabet contains the symbol � in addition to
rules from R. This symbol is used to mark the end of an upward path of nodes
in the parse tree each of which, except the last, is the left-most daughter node of
its mother node. As explained by Nijholt [1980], in the absence of such a symbol,
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FIG. 2. Function f for SLC.

it would be impossible to uniquely identify output strings with derivations of the
input.3

The function f for the strategy SLC is defined by Figure 2. Function f is defined
in terms of function fLC, which has two arguments. The first argument, d, is either
the empty string or a subderivation that has already been constructed. The second
argument is a suffix of the output string originally supplied as argument to f .
Function fLC removes the first symbol π from the output string, which will be a
rule A → X X1 · · · Xl or A → ε. In the former case, d must be ε if X ∈ �1
and d must be a subderivation from nonterminal X otherwise. The function is then
called recursively zero or more times, once for each nonterminal in X1 · · · Xl , to
obtain more subderivations di , 1 ≤ i ≤ l, each of which is obtained by consuming
a subsequent part of the output string. These subderivations are combined into
a larger subderivation d ′ = πdd1 · · · dl . Depending on the question whether we
encounter � as the immediately following symbol of the output string, we return
the derivation d ′ and the remainder v ′ of the output string, or call SLC recursively
once more to obtain a larger subderivation.

It can be easily shown that this strategy has the CPP. Regarding the SPP, note that
if there are two transitions [A → α • Bβ; X ]

ε,π
→ [A → α • Bβ; X ] [C → X • γ ]
and [A → α • Bβ; X ] Y1 
→ Z1 such that [C → X • γ ] � Y1, then Y1 must be
[C → Xγ •] and Z1 must be [A → α • Bβ; C], which means that Z1 is uniquely
determined by the first transition.

Since SLC has both CPP and SPP, left-corner parsing can be extended to become
a probabilistic parsing strategy. A direct construction of probabilistic left-corner
parsers from PCFGs has been presented by Tendeau [1995].

Since at most two rules occur in each of the items above, the size of a (probabilis-
tic) left-corner parser is O(|G|2), where |G| denotes the size of G. This is the same
complexity as that of the direct construction by Tendeau [1995]. This is in contrast
to a construction of ‘shift-reduce’ PPDAs out of PCFGs from Abney et al. [1999],

3 On pp. 22–23 of Nijholt [1980], a context-free grammar is considered that consists of the set of
rules R = {S → aS, S → Sb, S → c}. It is shown that any left-corner push-down transducer using
only R as output alphabet would output at most one string for each input string, whereas there may
be several derivations of the input, as the grammar is ambiguous.
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which were of size O(|G|5).4 The “conjecture that there is no concise translation of
PCFGs into shift-reduce PPDAs” from Abney et al. [1999] is made less significant
by the earlier construction by Tendeau [1995] and our construction above. It must
be noted however that the “shift-reduce” model adhered to by Abney et al. [1999]
is more restrictive than the PDT models adhered to by Tendeau [1995] and by us.

When we look at upper bounds on the sizes of PPDAs (or PPDTs) that describe the
same probability distributations as given PCFGs, and compare these with the upper
bounds for (nonprobabilistic) PDAs (or PDTs) for given CFGs, we can make the
following observation. Theorem 4.3 states that parsing strategies without the CPP
cannot be extended to become probabilistic. Furthermore, Leung and Wotschke
[2000] have shown that for certain fixed languages the smallest PDAs without the
CPP are much smaller than the smallest PDAs with the CPP. It may therefore appear
that probabilistic PDAs are in general larger than nonprobabilistic ones. However,
the automata studied by Leung and Wotschke [2000] pertain to very specific lan-
guages, and at this point there is little reason to believe that the demonstrated results
for these languages carry over to any reasonable strategy for general CFGs.

The third parsing strategy that we discuss is PLR parsing [Soisalon-Soininen
and Ukkonen 1979]. Since it is very similar to LC parsing, we merely provide a
sketch. The stack symbols for PLR parsing are like those for LC parsing, except
that the parts of rules following the dot are omitted. Thus, instead of symbols of
the form [A → α • β] and of the form [A → α • β; X ], a PLR parser manipulates
stack symbols [A → α] and [A → α; X ], respectively. That β is omitted means that
PLR parsers may postpone commitment to one from two similar rules A → αβ and
A → αβ ′ until the point is reached where β and β ′ differ. In this sense, PLR parsing
is less predictive than LC parsing, although it still satisfies the strong predictiveness
property, so that it can be extended to become probabilistic.

There are two minor differences between the transitions of LC parsers and those of
PLR parsers. The first is the simplification of stack symbols as explained above. The
second is that for PLR, output of a rule is delayed until it is completely recognized.
The resulting output strings are right-most derivations in reverse, which requires
different functions f than in the case of LC parsing. Note that right-most derivations
can be effectively mapped to corresponding parse trees, and parse trees can be
effectively mapped to corresponding left-most derivations. Hence, the required
functions f clearly exist.

The last strategy to be discussed in this section is a combination of left-corner
and top-down parsing. It has the special property that, provided the fixed CFG is
acyclic, the length of computations is bounded by a linear function on the length
of the input, which means that the parser cannot “loop” on any input. Note that if

4 This construction consisted of a transformation to Chomsky normal form followed by a transforma-
tion to Greibach normal form (GNF) [Harrison 1978]. Its worse-case time complexity, established in
p.c. with David McAllester, is reached for a family of CFGs (Gn)n≥2, defined by Gn = ({a1, . . . , an},
{A1, . . . , An}, A1, R), where R contains the rules Ai → Ai+1, for 1 ≤ i ≤ n − 1, An → A1, and
Ai → Ai Ai and Ai → ai , for 1 ≤ i ≤ n. After transformation to GNF, the grammar contains n5

rules of the form Ai1/Ai2 → ai3 Ai2/Ai4 Ai1/Ai5 , with 1 ≤ i1, i2, i3, i4, i5 ≤ n. A more economical
transformation to Greibach normal form is given by Blum and Koch [1999]; straightforward extension
to probabilities leads to probabilistic parsers of the type considered by Abney et al. [1999] of size
O(|G|4). An older transformation of PCFGs to GNF, by Huang and Fu [1971], yields grammars of
exponential size.
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the grammar is not acyclic, computations of unbounded length cannot be avoided
by any parsing strategy. From this perspective, this parsing strategy, which we will
call ε-LC parsing, is optimal. It is based on an algorithm by Nederhof [1993], and
a related idea for LR parsing was described by Nederhof and Sarbo [1996]. The
special termination properties of this strategy will be needed in Section 9.

We first define the binary relation �
ε over � ∪ N by: X �

ε A if and only if there
are α, β ∈ (� ∪ N )∗ such that (A → αXβ) ∈ R and α ⇒∗ ε. Relation �

ε differs
from the relation � defined earlier in that epsilon-generating nonterminals at the
beginning of a rule may be ignored.

The stack symbols are now of the form [A → α • β, μ • ν] or of the form
[A → α • Yβ, μ • ν; X ]. Similar to the stack symbols for pure LC parsing, we
have α �= ε∨ A = S and X � ∗

εY . Different is the additional dotted expression μ • ν,
which is such that μν is a string of epsilon-generating nonterminals, occurring at
the beginning of the right-hand side of a rule A → μναβ or A → μναYβ,
respectively. The string μν will be ignored in the part of the strategy that behaves
like left-corner parsing, where μ = ε. However, when the dot of the first dotted
expression is at the end, i.e., when we obtain a stack symbol of the form [A →
α •, • ν], then top-down parsing will be activated to retrieve epsilon-generating
subderivations for the nonterminals in ν, and the dot will move through ν from left to
right.5

We have Xinit = [S → • σ, •] and Xfinal = [S → σ •, •], where for technical
reasons, and without loss of generality, we assume that σ does not contain any
epsilon-generating nonterminals. Next to the symbols from R and the symbol �,
the output alphabet �2 also includes the set of integers {0, . . . , l −1}, where l = |α|
for a rule (A → α) ∈ R of maximal length; the purpose of such integers will become
clear below. For the definition of the set of transitions, we will be less precise than
for STD and SLC, to prevent cluttering up the presentation with details. We point out
however that in order to produce a reduced PDT from a reduced CFG, further side
conditions are needed for all items below:

—[A → α • Yβ, • μ]
a,ε
→ [A → α • Yβ, • μ; a] for a ∈ � such that a � ∗

εY ;

—[A → α • Bβ, • μ]
ε,π0
→ [A → α • Bβ, • μ; C] for π = C → ε such that

C � ∗ B;

—[A → α • Bβ, • μ; X ]
ε,πm
→ [A → α • Bβ, • μ; X ] [C → X • γ, • μ′] for

π = C → μ′ Xγ such that C � ∗
ε B and μ′ ⇒∗ ε, where m = |μ′|;

—[A → α • Bβ, • μ; X ] [C → Xγ •, μ′ •] 
→ [A → α • Bβ, • μ; C];

—[A → α • Yβ, • μ; Y ]
ε,�
→ [A → αY • β, • μ];

—[A → α •, μ • Bν]
ε,π
→ [A → α •, μ • Bν] [B → •, • μ′] for π = B → μ′

such that μ′ ⇒∗ ε;
—[A → α •, μ • Bν] [B → •, μ′ •] 
→ [A → α •, μB • ν].

The first five items are almost identical to the five items we presented for SLC,
except that strings μ of epsilon-generating nonterminals at the beginning of rules
are ignored. The length m of a string μ is output just after the relevant grammar

5 Although such subderivations can also be pre-compiled during construction of the PDT, we refrain
from doing so since this could lead to a PDT of exponential size.
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FIG. 3. Function f for Sε-LC.

rule is output, in the second and third items. This length m will be needed to define
function f below.

The last two items follow a top-down strategy, but only for epsilon-generating
rules. The produced transitions do what was deferred by the left-corner part of the
strategy: they construct subderivations for the epsilon-generating nonterminals in
strings μ.

The function f , which produces a complete derivation from an output string, is
defined through two auxiliary functions, viz. fε-LC for the left-corner part and fε-TD

for the top-down part, as shown in Figure 3.
The function fε-LC is similar to fLC defined in Figure 2. The main difference is

that now subderivations deriving ε for the first m nonterminals in the right-hand
side of a rule are obtained by calls of the function fε-TD. For a suffix v of an output
string, fε-TD(v) yields a pair (πd1 · · · dl, vl) such that v = πd1d2 · · · dlvl . In other
words, fε-TD does nothing more than split its argument into two parts. The length
of the first part πd1 · · · dl depends on the length l of the right-hand side of rule π
and on the lengths of right-hand sides of rules that are visited recursively.

It can be easily seen that Sε-LC has both CPP and SPP. The size of a produced
PDT is now O(|G|3), rather than O(|G|2) as in the case of SLC.

7. Parsing Strategies without SPP

In this section, we show that the absence of the strong predictiveness property
may mean that a parsing strategy with the CPP cannot be extended to become a
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probabilistic parsing strategy. We first illustrate this for LR(0) parsing, formalized
as a parsing strategy SLR, which has the CPP but not the SPP, as we will see. We
assume the reader is familiar with LR parsing; see Sippu and Soisalon-Soininen
[1990].

We take a PCFG (G, pG) defined by:

πS = S → AB, pG(πS) = 1

πA1 = A → aC, pG(πA1 ) = 1
3

πA2 = A → aD, pG(πA2 ) = 2
3

πB1 = B → bC, pG(πB1 ) = 2
3

πB2 = B → bD, pG(πB2 ) = 1
3

πC = C → xc, pG(πC ) = 1
πD = D → xd, pG(πD) = 1

Note that this grammar generates a finite language.
We will not present the entire LR automaton A, with SLR(G) = (A, f ) for some

f , but we merely mention two of its key transitions, which represent shift actions
over c and d:

τc = {C → x • c, D → x • d} c,ε
→ {C → x • c, D → x • d} {C → xc •}
τd = {C → x • c, D → x • d} d,ε
→ {C → x • c, D → x • d} {D → xd •}

(We denote LR states by their sets of kernel items, as usual.)
Take a probability function pA such that (A, pA) is a proper PPDT. It can be

easily seen that pA must assign 1 to all transitions except τc and τd , since that is the
only pair of distinct transitions that can be applied for one and the same top-of-stack
symbol, viz. {C → x • c, D → x • d}.

However,

pG(axcbxd)

pG(axdbxc)
= pG(πA1 ) · pG(πB2 )

pG(πA2 ) · pG(πB1 )
=

1
3 · 1

3
2
3 · 2

3

= 1

4

but
pA(axcbxd)

pA(axdbxc)
= pA(τc) · pA(τd)

pA(τd) · pA(τc)
= 1 �= 1

4
.

This shows that there is no pA such that (A, pA) assigns the same probabilities to
strings over � as (G, pG). It follows that the LR(0) strategy cannot be extended to
become a probabilistic parsing strategy.

Note that for G as above, pG(πA1 ) and pG(πB1 ) can be freely chosen, and this
choice determines the other values of pG , so we have two free parameters. For A
however, there is only one free parameter in the choice of pA. This is in conflict
with an underlying assumption of existing work on probabilistic LR parsing, by
for example, Briscoe and Carroll [1993] and Inui et al. [2000], viz. that LR parsers
would allow more fine-grained probability distributions than CFGs. However, for
some practical grammars from the area of natural language processing, Sornlertlam-
vanich et al. [1999] have shown that LR parsers do allow more accurate probability
distributions than the CFGs from which they were constructed, if probability func-
tions are estimated from corpora. In addition, Nederhof and Satta [2004a] have
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shown that the accuracy can even be improved by non-standard probabilistic LR
parsers that lack the properness condition.

By way of Theorem 5.1, it follows indirectly from the above that LR parsing lacks
the SPP. For the somewhat simpler ELR(0) parsing strategy, to be discussed next,
we will give a direct explanation of why it lacks the SPP. A direct explanation for
LR parsing is much more involved and therefore is not reported here, although the
argument is essentially of the same nature as the one we discuss for ELR parsing.

ELR parsing is not as well known as LR parsing. It was originally formulated as a
type of parsing strategy for extended CFGs [Purdom and Brown 1981; Leermakers
1989], but its restriction to normal CFGs is interesting in its own right, as argued
by Nederhof [1994]. ELR parsing for CFGs is also related to the tabular algorithm
from Voisin [1988].

Concerning the representation of right-hand sides of rules, stack symbols for
ELR parsing are similar to those for PLR parsing: only the part of a right-hand
side is represented that consists of the grammar symbols that have been processed.
Different from LC and PLR parsing is however that a stack symbol for ELR parsing
contains a set consisting of one or more nonterminals from the left-hand sides of
pairwise similar rules, rather than a single such nonterminal. This allows the com-
mitment to certain rules, and in particular to their left-hand sides, to be postponed
even longer than for LC and PLR parsing.

Thus, for a given CFG G = (�, N , S, R), we construct a pair SELR(G) =
(A, f ). Here A = (�, R, Q, [{S} → ε], [{S} → σ ], 
), where Q is a subset of
{[
 → α] | 
 ⊆ N ∧ ∀A ∈ 
∃β[(A → αβ) ∈ R]} ∪ {[
 → α; B] | 
 ⊆ N ∧
∀A ∈ 
∃β[(A → αβ) ∈ R ∧ B ∈ N ]}.

We provide simultaneous inductive definitions of Q and 
:

—[{S} → ε] ∈ Q;
—For [
 → α] ∈ Q, rule A → αYβ and a ∈ � such that A ∈ 
 and a � ∗Y , let

[
 → α; a] ∈ Q and [
 → α]
a,ε
→ [
 → α; a] ∈ 
;

—For [
 → α] ∈ Q, rules A → αBβ and π = C → ε such that A ∈ 
 and
C � ∗ B, let [
 → α; C] ∈ Q and [
 → α]

ε,π
→ [
 → α; C] ∈ 
;
—For [
1 → α; X ] ∈ Q and 
2 = {C | ∃(A → αBβ) ∈ R[A ∈ 
1 ∧

C → Xγ ∧ C � ∗ B]} �= ∅, let [
2 → X ] ∈ Q and [
1 → α; X ] 
→
[
1 → α; X ] [
2 → X ] ∈ 
;

—For [
1 → α; X ], [
2 → Xγ ] ∈ Q, rules A → αBβ and π = C →
Xγ such that A ∈ 
1, C ∈ 
2 and C � ∗ B, let [
1 → α; C] ∈ Q and
[
1 → α; X ] [
2 → Xγ ]

ε,π
→ [
1 → α; C] ∈ 
;
—For [
1 → α; Y ] ∈ Q and 
2 = {A ∈ 
1 | ∃β[(A → αYβ) ∈ R]} �= ∅, let

[
2 → αY ] ∈ Q and [
1 → α; Y ] 
→ [
2 → αY ] ∈ 
.

Note that the last five items are very similar to the five items for LC parsing.
In the second last item, we have assumed the availability of combined pop/swap
transitions of the form XY

x,y
→ Z . Such a transition can be seen as short-hand for
two transitions, the first of the form XY 
→ Zx,y , where Zx,y is a new symbol not

already in Q, and the second of the form Zx,y
x,y
→ Z .

The function f is defined as in the case of PLR parsing, and turns a complete
right-most derivation in reverse into a complete derivation.
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[{S} → ε]
a,ε
→ [{S} → ε; a]

[{S} → ε; a] 
→ [{S} → ε; a] [{A} → a]

[{A} → a]
x,ε
→ [{A} → a; x]

[{A} → a; x] 
→ [{A} → a; x] [{C, D} → x]

τc = [{C, D} → x]
c,ε
→ [{C, D} → x ; c]

τd = [{C, D} → x]
d,ε
→ [{C, D} → x ; d]

[{C, D} → x ; c] 
→ [{C} → xc]

[{A} → a; x] [{C} → xc]
ε,πC
→ [{A} → a; C]

[{A} → a; C] 
→ [{A} → aC]

[{S} → ε; a] [{A} → aC]
ε,πA1
→ [{S} → ε; A]

[{C, D} → x ; d] 
→ [{D} → xd]

[{A} → a; x] [{D} → xd]
ε,πD
→ [{A} → a; D]

[{A} → a; D] 
→ [{A} → aD]

[{S} → ε; a] [{A} → aD]
ε,πA2
→ [{S} → ε; A]

[{S} → ε; A] 
→ [{S} → A]

[{S} → A]
b,ε
→ [{S} → A; b]

[{S} → A; b] 
→ [{S} → A; b] [{B} → b]

[{B} → b]
x,ε
→ [{B} → b; x]

[{B} → b; x] 
→ [{B} → b; x] [{C, D} → x]

[{B} → b; x] [{C} → xc]
ε,πC
→ [{B} → b; C]

[{B} → b; C] 
→ [{B} → bC]

[{S} → A; b] [{B} → bC]
ε,πB1
→ [{S} → A; B]

[{B} → b; x] [{D} → xd]
ε,πD
→ [{B} → b; D]

[{B} → b; D] 
→ [{B} → bD]

[{S} → A; b] [{B} → bD]
ε,πB2
→ [{S} → A; B]

[{S} → A; B] 
→ [{S} → AB]

FIG. 4. Transitions for the ELR(0) parsing strategy.

ELR parsing has the CPP but, like LR parsing, it lacks the SPP. The problem
is caused by transitions of the form [
1 → α; X ] [
2 → Xγ ]

ε,π
→ [
1 → α; C].
Intuitively, a subcomputation that recognizes γ , directly after recognition of X ,
only commits to a choice of the left-hand side nonterminal C from 
2 after γ has
been completely recognized, and this choice is communicated to lower areas of the
stack through this pop transition.

That ELR parsing can indeed not be extended to a probabilistic parsing strategy
can be shown by considering the same CFG as above. From the set of transitions,
shown in Figure 4, we restrict our attention to the following two:

τc = [{C, D} → x]
c,ε
→ [{C, D} → x ; c]

τd = [{C, D} → x]
d,ε
→ [{C, D} → x ; d]

This is the only pair of transitions that can be applied for one and the same top-of-
stack. The rest of the proof is identical to that in the case of LR parsing.

Problems with the extension of ELR parsing to become a probabilistic pars-
ing strategy have been pointed out before by Tendeau [1997], who furthermore
proposed an alternative type of probabilistic push-down automaton that is capa-
ble of computing multiple probabilities for each subderivation. However, since a
transition of such an automaton may perform an unbounded number of elementary
computations on probabilities, we feel this automaton model cannot realistically
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express the behavior of probabilistic parsers, and therefore it will not be considered
further here.

8. Extension in the Wide Sense

The main result from the previous section is that, in general, there is no construction
of probabilistic LR parsers from PCFGs such that, first, a probabilistic LR parser
has the same set of transitions as the LR parser that would be constructed from the
CFG in the nonprobabilistic case and, second, the probabilistic LR parser has the
same probability distribution as the given PCFG.

There is a construction proposed by Wright and Wrigley [1991], Wright et al.
[1991], and Ng and Tomita [1991] that operates under different assumptions. In
particular, a probabilistic LR parser constructed from a certain PCFG may possess
several “copies” of one and the same LR state from the (nonprobabilistic) LR parser
constructed from the CFG, each annotated with some additional information to
distinguish it from other copies of the same LR state. Each such copy behaves as the
corresponding LR state from the LR parser if we neglect probabilities. Transitions
may however obtain different probabilities if they operate on different copies of
identical LR states, based on the additional information attached to the LR states.

By this construction, there are many PCFGs for which one may obtain a proba-
bilistic LR parser that describes the same probability distribution. This even holds
for the PCFG we discussed in the previous section, although we have shown that
a probabilistic LR parser without an extended LR state set could not describe the
same probability distribution. A serious problem with this approach is however that
the required number of copies of each LR state is potentially infinite.

In this section, we formulate these observations in terms of general parsing
strategies and a wider notion of extension to probabilistic parsing strategies. We also
show that the above-mentioned problem with infinite numbers of states is inherent in
LR parsing, rather than due to the particular construction of LR parsers from PCFGs
by Wright and Wrigley [1991], Wright et al. [1991] and Ng and Tomita [1991].

We first introduce some auxiliary notation and terminology. Let A and A′ be two
PDTs and let g be a function mapping the stack symbols of A′ to the stack symbols
of A. If τ is a transition of the form X 
→ XY, YX 
→ Z or X

x,y
→ Y from A′, then we
let g(τ ) denote a transition of the form g(X ) 
→ g(X )g(Y ), g(Y )g(X ) 
→ g(Z ) or
g(X )

x,y
→ g(Y ), respectively. This effectively extends g to a function from transitions
to transitions. Note that a transition g(τ ) may, but need not be a transition from A.
In the same vein, we extend g to a function from computations of A′ to sequences
of transitions (which may, but need not be computations of A), by applying g
element-wise as a function on transitions.

For PDTs A = (�1, �2, Q, Xinit, Xfinal, 
) and A′ = (�′
1, �′

2, Q′, X ′
init, X ′

final,


′), we say A′ is an expansion of A if �′
1 = �1, �′

2 = �2 and there is a function
g such that:

—g is a surjective function from Q′ to Q.
—Extended to transitions, g is a surjective function from 
′ to 
.
—Extended to computations, g is a bijective function from the set of computations

of A′ to the set of computations of A.
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In other words, for each stack symbol from Q, Q′ may contain one or more
corresponding stack symbols. The language that is accepted and the output strings
that are produced for given input strings remain the same however. Furthermore,
that g is a bijection on computations implies that the behaviour of the two automata
is identical in terms of, for example, the length of computations and the amount of
nondeterminism encountered within those computations.

To illustrate these definitions, assume we have an arbitrary PDT A. We construct
a second PDT A′ that is an expansion of A. It has the same input and output
alphabets, and for each stack symbol X from A, A′ has two stack symbols (X, 0)
and (X, 1). A second component 0 signifies that the distance of the stack symbol
to the bottom of the stack is even, and 1 that it is odd. Naturally, if Xinit and Xfinal

are the initial and final stack symbols of A, we choose the initial and final stack
symbols of A′ to be (Xinit, 0) and (Xfinal, 0), as they have distance 0 to the bottom
of the stack. For each transition of the form X 
→ XY, YX 
→ Z or X

x,y
→ Y from A,
we let A′ have the transitions (X, i) 
→ (X, i)(Y, 1 − i), (Y, i)(X, 1 − i) 
→ (Z , i)
or (X, i)

x,y
→ (Y, i), respectively, for both i = 0 and i = 1. Obviously, the function g
mapping stack symbols from A′ to stack symbols from A is given by g((X, i)) = X
for all X and i ∈ {0, 1}.

We now come to the central definition of this section. We say that probabilistic
parsing strategy S ′ is an extension in the wide sense of parsing strategy S if for
each reduced CFG G and probability function pG we have S(G) = (A, f ) if and
only if S ′(G, pG) = (A′, pA′, f ) for some A′ that is an expansion of A and some
pA′ . This definition allows more probabilistic parsing strategies S ′ to be related to
a given strategy S than the definition of extension from Section 3.

LR parsing however, which we know can not be extended to a probabilistic
strategy in the narrow sense from Section 3, can neither be extended in the wide
sense to a probabilistic parsing strategy. To prove this, consider the following PCFG
(G, pG), taken from Wright and Wrigley [1991] with minor modifications:

πS = S → A, pG(πS) = 1

πA1 = A → B, pG(πA1 ) = 1
2

πA2 = A → C, pG(πA2 ) = 1
2

πB1 = B → aB, pG(πB1 ) = 1
3

πB2 = B → b, pG(πB2 ) = 2
3

πC1 = C → aC, pG(πC1 ) = 2
3

πC2 = C → c, pG(πC2 ) = 1
3 .

The CFG G generates strings of the form anb and anc for any n ≥ 0. Observe
that

pG(anb)

pG(anc)
=

1
2 · (

1
3

)n · 2
3

1
2 · (

2
3

)n · 1
3

=
(

1

2

)n−1

.

Let A be such that SLR(G) = (A, f ) and consider input strings of the form anb
and anc, n ≥ 1. After scanning the first n symbols,A reaches a configuration where
the top-of-stack X is given by the set of (kernel) items:

X = {B → a • B, C → a • C}.
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There are three applicable transitions, representing shift actions over a, b and c,
given by:

τa = X
a,ε
→ X X

τb = X
b,ε
→ X {B → b •}

τc = X
c,ε
→ X {C → c •}

After reading b or c, the remaining transitions are fully deterministic.
For a PDT A′ that is an expansion of A, we may have different stack symbols

that are all mapped to X by function g. These stack symbols can be referred to as
Xn , which occur as top-of-stack after scanning the first n symbols of anb or anc,
n ≥ 1. We refer to the applicable transitions with top-of-stack Xn as:

τa,n = Xn
a,ε
→ Xn Xn+1

τb,n = Xn
b,ε
→ Xn {B → b •}n

τc,n = Xn
c,ε
→ Xn {C → c •}n

for certain stack symbols {B → b •}n and {C → c •}n that g maps to {B → b •}
and {C → c •}, respectively.

Now let us assume we have a probability function pA′ such that (A′, pA′) is a
PPDT. Since the application of either τb,n or τc,n is the only nondeterministic step
that distinguishes recognition of anb from recognition of anc, n ≥ 1, it follows that

pA(anb)

pA(anc)
= pA(τb,n)

pA(τc,n)
.

If (A′, pA′) assigns the same probabilities to strings over alphabet {a, b, c} as
(G, pG), then pA(τb,n)

pA(τc,n) must be equal to

pG(anb)

pG(anc)
=

(
1

2

)n−1

for each n ≥ 1. Since ( 1
2 )n−1 is a different value for each n however, this would

require A′ to possess infinitely many stack symbols, which is in conflict with the
definition of push-down transducers.

This shows that no probability function pA′ exists for any expansion A′ of A
such that (A′, pA′) assigns the same probabilities to strings over the alphabet as
(G, pG), and therefore LR parsing cannot be extended in the wide sense to become
a probabilistic parsing strategy. With only minor changes to the proof, the same can
be shown for ELR parsing.

9. Prefix Probabilities

In this section, we show that the behavior of PPDTs on input can be simulated
by dynamic programming. We also show how dynamic programming can be used
for computing prefix probabilities. Prefix probabilities have important applications,
e.g. in the area of speech recognition.

Our algorithm is a minor extension of an application of dynamic programming
developed for nonprobabilistic PDTs by Lang [1974] and Billot and Lang [1989],
and the treatment of probabilities is derived from Stolcke [1995].
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Assume a fixed PPDT (A, pA) and a fixed input string a1 · · · an . Consider a

computation of the form c1τc2, where (Xinit, a1 · · · ai , ε)
c1�∗ (αX, ε, v1), τ is of

the form X 
→ XY′, and (Y ′, ai+1 · · · a j , ε)
c2�∗ (Y, ε, v2), for some stack symbols

X, Y ′, Y , some input positions i and j (0 ≤ i ≤ j ≤ n), and some output strings v1
and v2. In words, the computation obtains top-of-stack X after scanning of ai but
before scanning of ai+1, then applies a push transition, and then possibly further
push, scan and pop transitions, which leads to Y on top of X after scanning of a j
but before scanning of a j+1.

We now abstract away from some details of such a computation by just record-
ing X , Y , i , j and its probability p1 = pA(c1τc2). The probability p1 is related
to what is commonly called a forward probability, as it expresses the probabil-
ity of the computation from the beginning onward.6 The existence of the above
computation is represented by an object that we will call a table item, written as
p1 : forward(X, Y, i, j).

Similarly, consider a subcomputation of the form τc2, where as before τ is of
the form X 
→ XY′, and (Y ′, ai+1 · · · a j , ε)

c2�∗ (Y, ε, v2), for some stack symbols
X, Y ′, Y , some input positions i and j (0 ≤ i ≤ j ≤ n), and some output string
v2. We express the existence of such a subcomputation by a different kind of table
item, written as p2 : inner(X, Y, i, j), where p2 = pA(τc2). Here, p2 is related to
what is commonly called an inner probability, as it expresses only the probability
internally in a subcomputation.7

For technical reasons, we also need to consider computations c where (Xinit,

a1 · · · a j , ε)
c

�∗ (Y, ε, v), for some Y , j and v . These are represented by table items
p1 : forward(⊥, Y, 0, j), where p1 = pA(c). The symbol ⊥ can be seen as an
imaginary stack symbol that is located below the actual bottom-of-stack element.

All table items of the above forms, and only those table items, can be derived by
the deduction system in Figure 5. Deduction systems for defining parsing algorithms
have been described before by Shieber et al. [1995]; see also Sikkel [1997] and
Sikkel and Nijholt [1997] for a very similar framework. A dynamic programming
algorithm for such a deduction system incrementally fills a parse table with table
items, given a grammar and input. During execution of the algorithm, items that are
already in the table are matched against antecents of inference rules. If a combination
of items match all antecents of an inference rule, then the item that matches the
consequent of that inference rule is added to the table. This process ends when no
more new items can be added to the table.

The item in the consequent of inference rule (20) represents the fact that at the
beginning of any computation, Xinit lies on top of imaginary stack element ⊥, no
input has as yet been read, and the product of probabilities of all transitions used
in the represented computation is 1, since no transitions have been used yet.

Inference rule (21) derives a table item from an existing table item, if the second
stack symbol of that existing item indicates that a push transition can be applied.
Naturally, the probability in the new item is the product of the probability in the

6 Forward probability as defined by Stolcke [1995] refers to the sum of the probabilities of all
computations from the beginning onward that lead to a certain rule occurrence, whereas here we
consider only one computation at a time. We will turn to forward probabilities later in this section.
7 We will turn to actual inner probabilities later in this section.
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FIG. 5. Deduction system of table items.

old item and the probability of the applied transition. Inference rule (22) is very
similar.

Two subcomputations are combined through a pop transition by inference rule
(23), the intuition of which can be explained as follows. If W occurs as top-of-
stack at position i and reading the input up to j results in Y on top of W , and if
subsequently reading the input from j to k results in X on top of Y and YX may be
replaced by Z by a pop transition, then reading the input from i to k results in Z on
top of W . The probability of the newly derived subcomputation is the product of
three probabilities. The first is the probability of that subcomputation up to the point
where Y is top-of-stack, which is given by p1; the second is the probability from
this point onward, up to the point where X is top-of-stack, which is given by p2;
the third is the probability of the pop transition. The second of these probabilities,
p2, is defined by the inference rules for ‘inner’ items to be discussed next.

Inference rule (24) starts the investigation of a new subcomputation that begins
with a push transition. This rule does not have any antecedents, but we may add an
item p1 : forward(Z , X, i, j) as antecedent, since the resulting ‘inner’ items can
only be useful for the computation of ‘forward’ items if at least one item of the
form p1 : forward(Z , X, i, j) exists. We will not do so however, since this would
complicate the theoretical analysis.

The next two rules, (25) and (26), are almost identical to (22) and (23).
It is not difficult to see that for each complete computation of the form (Xinit,

a1 · · · an, ε)
c

�∗ (Xfinal, ε, v), for some output string v , there is precisely one deriva-
tion by the deduction system of some table item p1 : forward(⊥, Xfinal, 0, n), where
p1 = pA(c). Conversely, for each derivation of such a table item, there is a unique
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corresponding computation. Computations and derivations can be easily related to
each other by looking at the transitions in the side conditions of the inference rules.

It follows that if we take the sum of p1 over all derivations of items p1 :
forward(⊥, Xfinal, 0, n), then we obtain the probability assigned by A to the input
w = a1 · · · an .

Now assume that A is proper and consistent. For a given string w ′ ∈ �∗
1 , where

�1 is the input alphabet, we define the prefix probability of w ′ to be
∑

w ′′∈�∗
1

pA(w ′w ′′).

In other words, we sum the probabilities of all strings w = w ′w ′′ that start with
prefix w ′. We will now show that this probability can also be expressed in terms of
the probabilities of ‘forward’ items.

Assume that w ′ = a1 · · · an , for some n ≥ 0. Any computation on a string
w = w ′w ′′ that is the prefix of a complete computation must be of one of two

types. The first is (Xinit, a1 · · · an, ε)
c

�∗ (Xfinal, ε, v), for some v , which means
that w ′′ = ε, so that no input beyond position n needs to be read. The second

is (Xinit, a1 · · · anan+1 · · · am, ε)
c1�∗ (αX, an+1 · · · am, v1)

τ

� (αY, an+2 · · · am, v1 y)
c2�∗ (Xfinal, ε, v1 yv2), where τ is a scan transition X

a,y
→ Y such that a = an+1.
The sum of probabilities of computations of the first type equals the sum of p1

over all derivations of items p1 : forward(⊥, Xfinal, 0, n), as we have explained
above. For the second type of computation, properness and consistency implies
that for given c1 and τ as above, the sum of probabilities of different c2 must
be 1. (If that sum, say q, is less than 1, then the sum of the probabilities of all
computations cannot be more than 1 − (1 − q) · pA(c2) < 1, which is in conflict
with the assumed consistency.) Furthermore, properness implies that the sum of
probabilities of different τ that we can apply for top-of-stack X must be 1. Therefore,
we may conclude that the sum of probabilities of computations of the second type

equals the sum of pA(c1) over all computations (Xinit, a1 · · · an, ε)
c1�∗ (αX, ε, v1)

such that there is at least one scan transition of the form X
a,y
→ Y . This equals the

sum of p1 over all derivations of items p1 : forward(Z , X, 0, n), for some Z , such
that there is at least one scan transition of the form X

a,y
→ Y .
Hereby we have shown how both the probability and the prefix probability of

a string can be expressed in terms of derivations of table items. However, the
number of derivations of table items can be infinite. The obvious remedy lies in
an alternative interpretation of the inference rules in Figure 5, following Goodman
[1999]: we regard objects of the form forward(X, Y, i, j) or inner(X, Y, i, j) as
table items in their own right, and store each at most once in the parse table. The
associated probabilities are then no longer those for individual derivations, but are
the sums of probabilities over all derivations of table items forward(X, Y, i, j) or
inner(X, Y, i, j). Such a sum of probabilities over all derivations of a table item is
commonly called a forward or inner probability, respectively.

We will make this more concrete, under the assumption that there are no cyclic
dependencies, i.e., there is no item forward(X, Y, i, j) or inner(X, Y, i, j) that
may occur as ancestor of itself in some derivation. Let T be the set of all items
forward(X, Y, i, j) or inner(X, Y, i, j) that can be derived using the deduction
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FIG. 6. Recursive functions to determine probabilities of table items.

system in Figure 5, ignoring the probabilities. We then define a function ptab from
table items to probabilities, as shown in Figure 6. We assume the function δ evaluates
to 1 if its argument is true, and to 0 otherwise.

Each line in the right-hand sides of the two equations in Figure 6 can be seen as
the backward application of an inference rule from Figure 5. In other words, for a
given item, we investigate all possible ways of deriving that item as the consequent
of different inference rules with different antecedents. For example, the second
line in the right-hand side of Eq. (27), can be seen as the backward application of
inference rule (21).

That Figure 6 is indeed equivalent to Figure 5 follows from the fact that multi-
plication distributes over addition. If there are cyclic dependencies, then the set of
equations in Figure 6 may no longer have a closed-form solution, but we may obtain
probabilities by an iterative algorithm that approximates the lowest non-negative
solution to the equations [Stolcke 1995].

Given the set of equations in Figure 6 we can now express the probability of a
string of length n as ptab(forward(⊥, Xfinal, 0, n)). The prefix probability of a string
of length n is given by:

ptab(forward(⊥, Xfinal, 0, n))

+
∑
X,Y,i :

forward(X,Y,i,n)∈T,

∃τ,a,y,Z [τ=Y
a,y
→ Z ]

ptab(forward(X, Y, i, n)). (20)
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To obtain a suitable PPDT from a given PCFG, we may apply the strategy Sε-LC

from Section 6. Provided the (P)CFG is acyclic, this strategy ensures that there
are no computations of infinite length for any given input, which implies there
are no cyclic dependencies in the simulation of the automaton by the dynamic
programming algorithm.

Hereby, we have presented a way to compute probabilities and prefix probabilities
of string. Our approach is an alternative to the one from Persoon and Fu [1975],
Jelinek and Lafferty [1991] and Stolcke [1995], and has the advantage that the
approach is parameterized by the parsing strategy: instead of Sε-LC we may apply
any other parsing strategy with the same properties with regard to acyclic grammars.
If our grammars are even more constrained, for example, if they do not have epsilon
rules, we may apply even simpler parsing strategies. Different parsing strategies
may differ in the efficiency of the computation.

10. Conclusions

We have formalized the notion of parsing strategy as a mapping from context-free
grammars to push-down transducers, and have investigated the extension to prob-
abilities. We have shown that the question of which strategies can be extended to
become probabilistic heavily relies on two properties, the correct-prefix property
and the strong predictiveness property. The CPP is a necessary condition for ex-
tending a strategy to become a probabilistic strategy. The CPP and SPP together
form a sufficient condition. We have shown that there is at least one strategy of
practical interest with the CPP but without the SPP that cannot be extended to
become a probabilistic strategy. Lastly, we have presented an application to prefix
probabilities.
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