339 research outputs found

    The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity

    Full text link
    Social sensing services use humans as sensor carriers, sensor operators and sensors themselves in order to provide situation-awareness to applications. This promises to provide a multitude of benefits to the users, for example in the management of natural disasters or in community empowerment. However, current social sensing services depend on Internet connectivity since the services are deployed on central Cloud platforms. In many circumstances, Internet connectivity is constrained, for instance when a natural disaster causes Internet outages or when people do not have Internet access due to economical reasons. In this paper, we propose the emerging Fog Computing infrastructure to become a key-enabler of social sensing services in situations of constrained Internet connectivity. To this end, we develop a generic architecture and API of Fog-enabled social sensing services. We exemplify the usage of the proposed social sensing architecture on a number of concrete use cases from two different scenarios.Comment: Ruben Mayer, Harshit Gupta, Enrique Saurez, and Umakishore Ramachandran. 2017. The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity. In Proceedings of The 2nd International Workshop on Social Sensing, Pittsburgh, PA, USA, April 21 2017 (SocialSens'17), 6 page

    Cooperation as a Service in VANET: Implementation and Simulation Results

    Get PDF
    The past decade has witnessed the emergence of Vehicular Ad-hoc Networks (VANET), specializing from the well-known Mobile Ad Hoc Networks (MANET) to Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communications. While the original motivation for Vehicular Networks was to promote traffic safety, recently it has become increasingly obvious that Vehicular Networks open new vistas for Internet access, providing weather or road condition, parking availability, distributed gaming, and advertisement. In previous papers [27,28], we introduced Cooperation as a Service (CaaS); a new service-oriented solution which enables improved and new services for the road users and an optimized use of the road network through vehicle\u27s cooperation and vehicle-to-vehicle communications. The current paper is an extension of the first ones; it describes an improved version of CaaS and provides its full implementation details and simulation results. CaaS structures the network into clusters, and uses Content Based Routing (CBR) for intra-cluster communications and DTN (Delay and disruption-Tolerant Network) routing for inter-cluster communications. To show the feasibility of our approach, we implemented and tested CaaS using Opnet modeler software package. Simulation results prove the correctness of our protocol and indicate that CaaS achieves higher performance as compared to an Epidemic approach

    Safe Intelligent Driver Assistance System in V2X Communication Environments based on IoT

    Get PDF
    In the modern world, power and speed of cars have increased steadily, as traffic continued to increase. At the same time highway-related fatalities and injuries due to road incidents are constantly growing and safety problems come first. Therefore, the development of Driver Assistance Systems (DAS) has become a major issue. Numerous innovations, systems and technologies have been developed in order to improve road transportation and safety. Modern computer vision algorithms enable cars to understand the road environment with low miss rates. A number of Intelligent Transportation Systems (ITSs), Vehicle Ad-Hoc Networks (VANETs) have been applied in the different cities over the world. Recently, a new global paradigm, known as the Internet of Things (IoT) brings new idea to update the existing solutions. Vehicle-to-Infrastructure communication based on IoT technologies would be a next step in intelligent transportation for the future Internet-of-Vehicles (IoV). The overall purpose of this research was to come up with a scalable IoT solution for driver assistance, which allows to combine safety relevant information for a driver from different types of in-vehicle sensors, in-vehicle DAS, vehicle networks and driver`s gadgets. This study brushed up on the evolution and state-of-the-art of Vehicle Systems. Existing ITSs, VANETs and DASs were evaluated in the research. The study proposed a design approach for the future development of transport systems applying IoT paradigm to the transport safety applications in order to enable driver assistance become part of Internet of Vehicles (IoV). The research proposed the architecture of the Safe Intelligent DAS (SiDAS) based on IoT V2X communications in order to combine different types of data from different available devices and vehicle systems. The research proposed IoT ARM structure for SiDAS, data flow diagrams, protocols. The study proposes several IoT system structures for the vehicle-pedestrian and vehicle-vehicle collision prediction as case studies for the flexible SiDAS framework architecture. The research has demonstrated the significant increase in driver situation awareness by using IoT SiDAS, especially in NLOS conditions. Moreover, the time analysis, taking into account IoT, Cloud, LTE and DSRS latency, has been provided for different collision scenarios, in order to evaluate the overall system latency and ensure applicability for real-time driver emergency notification. Experimental results demonstrate that the proposed SiDAS improves traffic safety

    Requirement analysis for building practical accident warning systems based on vehicular ad-hoc networks

    Get PDF
    An Accident Warning System (AWS) is a safety application that provides collision avoidance notifications for next generation vehicles whilst Vehicular Ad-hoc Networks (VANETs) provide the communication functionality to exchange these notifi- cations. Despite much previous research, there is little agreement on the requirements for accident warning systems. In order to build a practical warning system, it is important to ascertain the system requirements, information to be exchanged, and protocols needed for communication between vehicles. This paper presents a practical model of an accident warning system by stipulating the requirements in a realistic manner and thoroughly reviewing previous proposals with a view to identify gaps in this area

    An Innovative Technique to Avoid Traffic Jamming for VANET Using NS-2

    Get PDF
    A range of efficient control of vehicles has grown together with information and communication tools In scrupulous, with the appliance of wireless network for real world information offering, it has been feasible to create Vehicular Ad-hoc Network (VANET), an intellectual vehicle service for ease and protection, which does feasible crash accident detection and prevention, caution of hazardous aspects on road, traffic information offering, and other types of service offering. Nevertheless, the VANET service situation has physical and technical vulnerabilities sourced by the vehicular inside/outside communication based on wireless network. Thus, Vehicular protection has become known as a crucial aspect to avert malevolent threats and confidentiality defiance from vehicles, drivers, and traffic network. In this paper we proposed a scheme for discovering the routing mischief of an attacker aligned with traffic jamming. Now if the congestions take place in a particular section then in that case all vehicular nodes would produce the traffic jam indications known as Jamming declaration indications to their fellow vehicles and through that the vehicular node would modify their direction. Performances of outcomes are calculated on the basis of parameters: Packet Delivery Ratio, Routing Load and Throughput using Network Simulator (NS-2). Keywords: VANET (Vehicular Ad-hoc Network), Vehicle security, traffic jamming, Road Side Uni

    Using Aerial and Vehicular NFV Infrastructures to Agilely Create Vertical Services

    Get PDF
    5G communications have become an enabler for the creation of new and more complex networking scenarios, bringing together different vertical ecosystems. Such behavior has been fostered by the network function virtualization (NFV) concept, where the orchestration and virtualization capabilities allow the possibility of dynamically supplying network resources according to its needs. Nevertheless, the integration and performance of heterogeneous network environments, each one supported by a different provider, and with specific characteristics and requirements, in a single NFV framework is not straightforward. In this work we propose an NFV-based framework capable of supporting the flexible, cost-effective deployment of vertical services, through the integration of two distinguished mobile environments and their networks: small sized unmanned aerial vehicles (SUAVs), supporting a flying ad hoc network (FANET) and vehicles, promoting a vehicular ad hoc network (VANET). In this context, a use case involving the public safety vertical will be used as an illustrative example to showcase the potential of this framework. This work also includes the technical implementation details of the framework proposed, allowing to analyse and discuss the delays on the network services deployment process. The results show that the deployment times can be significantly reduced through a distributed VNF configuration function based on the publish&-subscribe model.This article has been partially supported by the European H2020 5GinFIRE project (grant agreement 732497). The work of the Universidad Carlos III team members was partially supported by the European H2020 LABYRINTH project (grant agreement H2020-MG-2019-TwoStages-861696), and by the TRUE5G project (PID2019-108713RB-C52PID2019-108713RB-C52/AEI/10.13039/501100011033) funded by the Spanish National Research Agency; and the work of the Instituto de Telecomunicações team members, by the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework Mobilizer Project 5G with Nr. 024539 (POCI-01-0247-FEDER-024539)

    SNAP : A Software-Defined & Named-Data Oriented Publish-Subscribe Framework for Emerging Wireless Application Systems

    Get PDF
    The evolution of Cyber-Physical Systems (CPSs) has given rise to an emergent class of CPSs defined by ad-hoc wireless connectivity, mobility, and resource constraints in computation, memory, communications, and battery power. These systems are expected to fulfill essential roles in critical infrastructure sectors. Vehicular Ad-Hoc Network (VANET) and a swarm of Unmanned Aerial Vehicles (UAV swarm) are examples of such systems. The significant utility of these systems, coupled with their economic viability, is a crucial indicator of their anticipated growth in the future. Typically, the tasks assigned to these systems have strict Quality-of-Service (QoS) requirements and require sensing, perception, and analysis of a substantial amount of data. To fulfill these QoS requirements, the system requires network connectivity, data dissemination, and data analysis methods that can operate well within a system\u27s limitations. Traditional Internet protocols and methods for network connectivity and data dissemination are typically designed for well-engineering cyber systems and do not comprehensively support this new breed of emerging systems. The imminent growth of these CPSs presents an opportunity to develop broadly applicable methods that can meet the stated system requirements for a diverse range of systems and integrate these systems with the Internet. These methods could potentially be standardized to achieve interoperability among various systems of the future. This work presents a solution that can fulfill the communication and data dissemination requirements of a broad class of emergent CPSs. The two main contributions of this work are the Application System (APPSYS) system abstraction, and a complementary communications framework called the Software-Defined NAmed-data enabled Publish-Subscribe (SNAP) communication framework. An APPSYS is a new breed of Internet application representing the mobile and resource-constrained CPSs supporting data-intensive and QoS-sensitive safety-critical tasks, referred to as the APPSYS\u27s mission. The functioning of the APPSYS is closely aligned with the needs of the mission. The standard APPSYS architecture is distributed and partitions the system into multiple clusters where each cluster is a hierarchical sub-network. The SNAP communication framework within the APPSYS utilized principles of Information-Centric Networking (ICN) through the publish-subscribe communication paradigm. It further extends the role of brokers within the publish-subscribe paradigm to create a distributed software-defined control plane. The SNAP framework leverages the APPSYS design characteristics to provide flexible and robust communication and dynamic and distributed control-plane decision-making that successfully allows the APPSYS to meet the communication requirements of data-oriented and QoS-sensitive missions. In this work, we present the design, implementation, and performance evaluation of an APPSYS through an exemplar UAV swarm APPSYS. We evaluate the benefits offered by the APPSYS design and the SNAP communication framework in meeting the dynamically changed requirements of a data-intensive and QoS-sensitive Coordinated Search and Tracking (CSAT) mission operating in a UAV swarm APPSYS on the battlefield. Results from the performance evaluation demonstrate that the UAV swarm APPSYS successfully monitors and mitigates network impairment impacting a mission\u27s QoS to support the mission\u27s QoS requirements

    Cooperation as a Service in VANET: Implementation and Simulation Results

    Get PDF
    The past decade has witnessed the emergence of Vehicular Ad-hoc Networks (VANET), specializing from the well-known Mobile Ad Hoc Networks (MANET) to Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communications. While the original motivation for Vehicular Networks was to promote traffic safety, recently it has become increasingly obvious that Vehicular Networks open new vistas for Internet access, providing weather or road condition, parking availability, distributed gaming, and advertisement. In previous papers [27,28], we introduced Cooperation as a Service (CaaS); a new service-oriented solution which enables improved and new services for the road users and an optimized use of the road network through vehicle's cooperation and vehicle-to-vehicle communications. The current paper is an extension of the first ones; it describes an improved version of CaaS and provides its full implementation details and simulation results. CaaS structures the network into clusters, and uses Content Based Routing (CBR) for intra-cluster communications and DTN (Delay–and disruption-Tolerant Network) routing for inter-cluster communications. To show the feasibility of our approach, we implemented and tested CaaS using Opnet modeler software package. Simulation results prove the correctness of our protocol and indicate that CaaS achieves higher performance as compared to an Epidemic approach

    Cloud Based IP Multimedia Subsystem (IMS) Architecture to Integrate Vehicular Ad Hoc Network (VANET) and IMS

    Get PDF
    RÉSUMÉ Les réseaux Ad Hoc véhiculaires (VANET) représentent une technologie spéciale, dans la catégorie des réseaux ad hoc sans fils. Ils visent la sécurité routière, une plus grande efficacité et une meilleure organisation au sein des systèmes de transport. Ils favorisent l’avènement de nouvelles applications relatives à l’ingénierie, la gestion de trafic, la dissémination d’informations d’urgence pour éviter les situations critiques, le confort et le divertissement, ainsi que plusieurs autres «applications utilisateur». Le sous-système multimédia IP (IP Multimedia Subsystem, IMS), a été standardisé par le projet «Third Generation Partnership Project» (3GPP) pour les réseaux hétérogènes avec un support de la qualité de service. Cette plateforme a été proposée dans le but d’offrir aux utilisateurs finaux des services multimédia tels que la voix, les données et la vidéo, la facturation ainsi que l’intégration des services tout-IP. Avec l’avènement de IMS, il est désirable d’offrir aux utilisateurs des réseaux véhiculaires (VANET), un accès aux services de ce sous-système. Cependant, les caractéristiques de ces réseaux posent des difficultés majeures pour le contrôle des performances des services IMS. Par ailleurs, le «réseau cœur » de IMS présente aussi des limitations telles que le contrôle centralisé, la faible efficacité et une faible évolutivité au niveau des équipements du réseau cœur en comparaison aux infrastructures de réseau utilisant le Cloud Computing. Le Cloud Computing est un nouveau paradigme des technologies de l’information, offrant des ressources extensibles dynamiquement, souvent au moyen de machines virtuelles et accessibles en tant que services sur Internet. La migration de l’IMS au sein du Cloud peut permettre d’améliorer les performances de l’infrastructure IMS. Ce projet propose une architecture novatrice d’intégration des réseaux VANET, IMS et le Cloud Computing.----------ABSTRACT Vehicular Ad Hoc network (VANET) is a special technology in wireless ad hoc networks. It can be used to provide road safety, efficiency and traffic organization in transportation system. Thus, new applications arise in several fields such as traffic engineering, traffic management, dissemination of emergency information in order to avoid critical situations, comfort, entertainment and other user applications. IP multimedia Subsystem (IMS) is a subsystem, standardized with Third Generation Partnership Project (3GPP). The IMS supports heterogeneous networking with Quality-of-Service (QoS) policy. The goal of this platform is to integrate All-IP services and to provide final user with multimedia services such as voice, data and video with appropriate billing mechanisms. With the advent of the IP Multimedia Subsystem, it is desirable to provide VANET end-users with IMS services. However, characteristics of VANET cause major challenges to control the performance of IMS services. On the other hand, the traditional IMS core network faces a set of problems such as centralized control, low efficiency and poor scalability of core equipment, compared with the IT environment using Cloud Computing. Cloud Computing is an emerging paradigm in the field of information technology. In this new paradigm, dynamically scalable and often virtualized resources are provided as services over the Internet. The migration of IMS to cloud can improve its performance. This project proposes an innovative architecture in order to integrate VANET, IMS and Cloud Computing
    • …
    corecore