8 research outputs found

    A psychopathological approach to safety engineering in AI and AGI

    Get PDF
    The complexity of dynamics in AI techniques is already approaching that of complex adaptive systems, thus curtailing the feasibility of formal controllability and reachability analysis in the context of AI safety. It follows that the envisioned instances of Artificial General Intelligence (AGI) will also suffer from challenges of complexity. To tackle such issues, we propose the modeling of deleterious behaviors in AI and AGI as psychological disorders, thereby enabling the employment of psychopathological approaches to analysis and control of misbehaviors. Accordingly, we present a discussion on the feasibility of the psychopathological approaches to AI safety, and propose general directions for research on modeling, diagnosis, and treatment of psychological disorders in AGI

    Unpredictability of AI

    Get PDF
    The young field of AI Safety is still in the process of identifying its challenges and limitations. In this paper, we formally describe one such impossibility result, namely Unpredictability of AI. We prove that it is impossible to precisely and consistently predict what specific actions a smarter-than-human intelligent system will take to achieve its objectives, even if we know terminal goals of the system. In conclusion, impact of Unpredictability on AI Safety is discussed

    Unexplainability and Incomprehensibility of Artificial Intelligence

    Get PDF
    Explainability and comprehensibility of AI are important requirements for intelligent systems deployed in real-world domains. Users want and frequently need to understand how decisions impacting them are made. Similarly it is important to understand how an intelligent system functions for safety and security reasons. In this paper, we describe two complementary impossibility results (Unexplainability and Incomprehensibility), essentially showing that advanced AIs would not be able to accurately explain some of their decisions and for the decisions they could explain people would not understand some of those explanations

    From Novelty Detection to a Genetic Algorithm Optimized Classification for the Diagnosis of a SCADA-Equipped Complex Machine

    Get PDF
    In the field of Diagnostics, the fundamental task of detecting damage is basically a binary classification problem, which is addressed in many cases via Novelty Detection (ND): an observation is classified as novel if it differs significantly from reference, healthy data. ND is practically implemented summarizing a multivariate dataset with univariate distance information called Novelty Index. As many different approaches are possible to produce NIs, in this analysis, the possibility of implementing a simple classifier in a reduced-dimensionality space of NIs is studied. In addition to a simple decision-tree-like classification method, the process for obtaining the NIs can result as a dimension reduction method and, in turn, the NIs can be used for other classification algorithms. In addition, a case study will be analyzed thanks to the data published by the Prognostics and Health Management Europe (PHME) society, on the occasion of the Data Challenge 2021

    On Controllability of Artificial Intelligence

    Get PDF
    Invention of artificial general intelligence is predicted to cause a shift in the trajectory of human civilization. In order to reap the benefits and avoid pitfalls of such powerful technology it is important to be able to control it. However, possibility of controlling artificial general intelligence and its more advanced version, superintelligence, has not been formally established. In this paper, we present arguments as well as supporting evidence from multiple domains indicating that advanced AI can’t be fully controlled. Consequences of uncontrollability of AI are discussed with respect to future of humanity and research on AI, and AI safety and security. This paper can serve as a comprehensive reference for the topic of uncontrollability
    corecore