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"If a lion could speak, we couldn't understand him" 

Ludwig Wittgenstein 

 

“It would be possible to describe everything scientifically, but it would make no sense. It would 

be a description without meaning - as if you described a Beethoven symphony as a variation of 

wave pressure.” 

Albert Einstein 

  

“Some things in life are too complicated to explain in any language. … Not just to explain to 

others but to explain to yourself. Force yourself to try to explain it and you create lies.” 

Haruki Murakami 

 

“I understand that you don’t understand” 

Grigori Perelman 

 

Abstract 

Explainability and comprehensibility of AI are important requirements for intelligent systems 

deployed in real-world domains. Users want and frequently need to understand how decisions 

impacting them are made. Similarly it is important to understand how an intelligent system 

functions for safety and security reasons. In this paper, we describe two complementary 

impossibility results (Unexplainability and Incomprehensibility), essentially showing that 

advanced AIs would not be able to accurately explain some of their decisions and for the decisions 

they could explain people would not understand some of those explanations.  

 

Keywords: AI Safety, Black Box, Comprehensible, Explainable AI, Impossibility, Intelligible, 

Interpretability, Transparency, Understandable, Unserveyability. 

 

 

1. Introduction  
For decades AI projects relied on human expertise, distilled by knowledge engineers, and were 

both explicitly designed and easily understood by people. For example, expert systems, frequently 

based on decision trees, are perfect models of human decision making and so are naturally 

understandable by both developers and end-users. With paradigm shift in the leading AI 
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methodology, over the last decade, to machine learning systems based on Deep Neural Networks 

(DNN) this natural ease of understanding got sacrificed. The current systems are seen as “black 

boxes” (not to be confused with AI boxing [1, 2]), opaque to human understanding but extremely 

capable both with respect to results and learning of new domains. As long as Big Data and Huge 

Compute are available, zero human knowledge is required [3] to achieve superhuman [4] 

performance. 

 

With their new found capabilities DNN-based AI systems are tasked with making decisions in 

employment [5], admissions [6], investing [7], matching [8], diversity [9], security [10, 11], 

recommendations [12], banking [13], and countless other critical domains. As many such domains 

are legally regulated, it is a desirable property and frequently a requirement [14, 15] that such 

systems should be able to explain how they arrived at their decisions, particularly to show that they 

are bias free [16]. Additionally, and perhaps even more importantly to make artificially intelligent 

systems safe and secure [17] it is essential that we understand what they are doing and why. A 

particular area of interest in AI Safety [18-25] is predicting and explaining causes of AI failures 

[26]. 

 

A significant amount of research [27-41] is now being devoted to developing explainable AI. In 

the next section we review some main results and general trends relevant to this paper.    

 

2. Literature Review  
Hundreds of papers have been published on eXplainable Artificial Intelligence (XAI) [42]. 

According to DARPA [27], XAI is supposed to “produce more explainable models, while 

maintaining a high level of learning performance … and enable human users to understand, 

appropriately, trust, and effectively manage the emerging generation of artificially intelligent 

partners”. Detailed analysis of literature on explainability or comprehensibility is beyond the scope 

of this paper, but the readers are encouraged to look at many excellent surveys of the topic [43-

45]. Miller [46] surveys social sciences  to understand how people explain, in the hopes of 

transferring that knowledge to XAI, but of course people often say: “I can’t explain it” or “I don’t 

understand”. For example, most people are unable to explain how they recognize faces, a problem 

we frequently ask computers to solve [47, 48].   

 

Despite wealth of publications on XAI and related concepts [49-51], the subject of unexplainability 

or incomprehensibility of AI is only implicitly addressed. Some limitations of explainability are 

discussed: “ML algorithms intrinsically consider high-degree interactions between input features, 

which make disaggregating such functions into human understandable form difficult. … While a 

single linear transformation may be interpreted by looking at the weights from the input features 

to each of the output classes, multiple layers with non-linear interactions at every layer imply 

disentangling a super complicated nested structure which is a difficult task and potentially even a 

questionable one [52]. … As mentioned before, given the complicated structure of ML models, 

for the same set of input variables and prediction targets, complex machine learning algorithms 

can produce multiple accurate models by taking very similar but not the same internal pathway in 

the network, so details of explanations can also change across multiple accurate models. This 

systematic instability makes automated generated explanations difficult.” [42].  

 



Sutcliffe et al. talk about incomprehensible theorems [53]: “Comprehensibility estimates the effort 

required for a user to understand the theorem. Theorems with many or deeply nested structures 

may be considered incomprehensible.” Muggleton et al. [54] suggest “using inspection time as a 

proxy for incomprehension. That is, we might expect that humans take a long time … in the case 

they find the program hard to understand. As a proxy, inspection time is easier to measure than 

comprehension.”  

 

The tradeoff between explainability and comprehensibility is recognized [52], but is not taken to 

its logical conclusion. “[A]ccuracy generally requires more complex prediction methods [but] 

simple and interpretable functions do not make the most accurate predictors'' [55]. “Indeed, there 

are algorithms that are more interpretable than others are, and there is often a tradeoff between 

accuracy and interpretability: the most accurate AI/ML models usually are not very explainable 

(for example, deep neural nets, boosted trees, random forests, and support vector machines), and 

the most interpretable models usually are less accurate (for example, linear or logistic regression).” 

[42]. 

 

Incomprehensibility is supported by well-known impossibility results. Charlesworth proved his 

Comprehensibility theorem while attempting to formalize the answer to such questions as: “If [full 

human-level intelligence] software can exist, could humans understand it?” [56]. While describing 

implications of his theorem on AI, he writes [57]: “Comprehensibility Theorem is the first 

mathematical theorem implying the impossibility of any AI agent or natural agent—including a 

not-necessarily infallible human agent—satisfying a rigorous and deductive interpretation of the 

self-comprehensibility challenge. … Self-comprehensibility in some form might be essential for a 

kind of self-reflection useful for self-improvement that might enable some agents to increase their 

success.” It is reasonable to conclude that a system which doesn’t comprehend itself would not be 

able to explain itself. 

 

Hernandez-Orallo et al. introduce the notion of K-incomprehensibility (a.k.a. K-hardness)  [58]. 

“This will be the formal counterpart to our notion of hard-to-learn good explanations. In our sense, 

a k-incomprehensible string with a high k (difficult to comprehend) is different (harder) than a k-

compressible string (difficult to learn) [59] and different from classical computational complexity 

(slow to compute). Calculating the value of k for a given string is not computable in general. 

Fortunately, the converse, i.e., given an arbitrary k, calculating whether a string is k-

comprehensible is computable. … Kolmogorov Complexity measures the amount of information 

but not the complexity to understand them.” [58]. 

 

Yampolskiy addresses limits of understanding other agents in his work on the space of possible 

minds [60]: “Each mind design corresponds to an integer and so is finite, but since the number of 

minds is infinite some have a much greater number of states compared to others. This property 

holds for all minds. Consequently, since a human mind has only a finite number of possible states, 

there are minds which can never be fully understood by a human mind as such mind designs have 

a much greater number of states, making their understanding impossible as can be demonstrated 

by the pigeonhole principle.” Hibbard points out safety impact from incomprehensibility of AI: 

“Given the incomprehensibility of their thoughts, we will not be able to sort out the effect of any 

conflicts they have between their own interests and ours.” 

 



We are slowly starting to realize that as AIs become more powerful, the models behind their 

success will become ever less comprehensible to us [61]: “… deep learning that produces 

outcomes based on so many different variables under so many different conditions being 

transformed by so many layers of neural networks that humans simply cannot comprehend the 

model the computer has built for itself. … Clearly our computers have surpassed us in their power 

to discriminate, find patterns, and draw conclusions. That’s one reason we use them. Rather than 

reducing phenomena to fit a relatively simple model, we can now let our computers make models 

as big as they need to. But this also seems to mean that what we know depends upon the output of 

machines the functioning of which we cannot follow, explain, or understand. … But some of the 

new models are incomprehensible. They can exist only in the weights of countless digital triggers 

networked together and feeding successive layers of networked, weighted triggers representing 

huge quantities of variables that affect one another in ways so particular that we cannot derive 

general principles from them.”  

 

“Now our machines are letting us see that even if the rules are simple, elegant, beautiful and 

rational, the domain they govern is so granular, so intricate, so interrelated, with everything 

causing everything else all at once and forever, that our brains and our knowledge cannot begin to 

comprehend it. … Our new reliance on inscrutable models as the source of the justification of our 

beliefs puts us in an odd position. If knowledge includes the justification of our beliefs, then 

knowledge cannot be a class of mental content, because the justification now consists of models 

that exist in machines, models that human mentality cannot comprehend. … But the promise of 

machine learning is that there are times when the machine’s inscrutable models will be far more 

predictive than the manually constructed, human-intelligible ones. In those cases, our 

knowledge — if we choose to use it — will depend on justifications that we simply cannot 

understand. … [W]e are likely to continue to rely ever more heavily on justifications that we 

simply cannot fathom. And the issue is not simply that we cannot fathom them, the way a lay 

person can’t fathom a string theorist’s ideas. Rather, it’s that the nature of computer-based 

justification is not at all like human justification. It is alien.” [61]. 

 

3. Unexplainability 
A number of impossibility results are well-known in many areas of research [62-70] and some are 

starting to be discovered in the domain of AI research, for example: Unverifiability [71], 

Unpredictability1 [72] and limits on preference deduction [73] or alignment [74]. In this section 

we introduce Unexplainability of AI and show that some decisions of superintelligent systems will 

never be explainable, even in principle. We will concentrate on the most interesting case, a 

superintelligent AI acting in novel and unrestricted domains. Simple cases of Narrow AIs making 

decisions in restricted domains (Ex. Tic-Tac-Toe) are both explainable and comprehensible. 

Consequently a whole spectrum of AIs can be developed from completely 

explainable/comprehensible to completely unexplainable/incomprehensible. We define 

Unexplainability as impossibility of providing an explanation for certain decisions made by an 

intelligent system which is both 100% accurate and comprehensible. 

 

Artificial Deep Neural Networks continue increasing in size and may already comprise millions 

of neurons, thousands of layers and billions of connecting weights, ultimately targeting and 
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Unpredictability of AI. arXiv preprint arXiv:1905.13053, 2019. for details.   



perhaps surpassing the size of the human brain. They are trained on Big Data from which million 

feature vectors are extracted and on which decisions are based, with each feature contributing to 

the decision in proportion to a set of weights. To explain such a decision, which relies on literally 

billions of contributing factors, AI has to either simplify the explanation and so make the 

explanation less accurate/specific/detailed or to report it exactly but such an explanation elucidates 

nothing by virtue of its semantic complexity, large size and abstract data representation. Such 

precise reporting is just a copy of trained DNN model.  

 

For example, an AI utilized in the mortgage industry may look at an application to decide credit 

worthiness of a person in order to approve them for a loan. For simplicity, let’s say the system 

looks at only a hundred descriptors of the applicant and utilizes a neural network to arrive at a 

binary approval decision. An explanation which included all hundred features and weights of the 

neural network would not be very useful, so the system may instead select one of two most 

important features and explain its decision with respect to just those top properties, ignoring the 

rest. This highly simplified explanation would not be accurate as the other 98 features all 

contributed to the decision and if only one or two top features were considered the decision could 

have been different. This is similar to how Principal Component Analysis works for dimensionality 

reduction [75].  

 

Even if the agent trying to get the explanation is not a human but another AI the problem remains 

as the explanation is either inaccurate or agent-encoding specific. Trained model could be copied 

to another neural network, but it would likewise have a hard time explaining its decisions. 

Superintelligent systems not based on DNN would face similar problems as their decision 

complexity would be comparable to those based on neural networks and would not permit 

production of efficient and accurate explanations. The problem persists in the case of self-

referential analysis, where a system may not understand how it is making a particular decision.  

 

Any decision made by the AI is a function of some input data and is completely derived from the 

code/model of the AI, but to make it useful an explanation has to be simpler than just presentation 

of the complete model while retaining all relevant, to the decision, information. We can reduce 

this problem of explaining to the problem of lossless compression [76]. Any possible decision 

derived from data/model can be represented by an integer encoding such data/model combination 

and it is a proven fact that some random integers can’t be compressed without loss of information 

due to the Counting argument [77]. “The pigeonhole principle prohibits a bijection between the 

collection of sequences of length N and any subset of the collection of sequences of length N - 1. 

Therefore, it is not possible to produce a lossless algorithm that reduces the size of every possible 

input sequence.”2 To avoid this problem, an AI could try to produce decisions, which it knows are 

explainable/compressible, but that means that it is not making the best decision with regards to the 

given problem, doing so is suboptimal and may have safety consequences and so should be 

discouraged. 

 

Overall, we should not be surprised by the challenges faced by Artificial Neural Networks 

attempting to explain their decision, as they are modeled on Natural Neural Networks of human 

beings and people are also “black boxes” as illustrated by a number of split brain experiments [78]. 

In such experiments it is frequently demonstrated that people simply make up explanations for 
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their actions after the decision has already been made. Even to ourselves, we rationalize our 

decision after the fact and don’t become aware of our decisions or how we made them until after 

they been made unconsciously [79]. People are notoriously bad at explaining certain decisions 

such as how they recognize faces or what makes them attracted to a particular person. These 

reported limitations in biological agents support idea that unexplainability is a universal 

impossibility result impacting all sufficiently complex intelligences.  

 

4. Incomprehensibility 
A complimentary concept to Unexplainability, Incomprehensibility of AI address capacity of 

people to completely understand an explanation provided by an AI or superintelligence. We define 

Incomprehensibility as an impossibility of completely understanding any 100% - accurate 

explanation for certain decisions of intelligent system, by any human.  

 

Artificially intelligent systems are designed to make good decision in their domains of deployment. 

Optimality of the decision with respect to available information and computational resources is 

what we expect from a successful and highly intelligent systems. An explanation of the decision, 

in its ideal form, is a proof of correctness of the decision. (For example, a superintelligent chess 

playing system may explain why it sacrificed a queen by showing that it forces a checkmate in 12 

moves, and by doing so proving correctness of its decision.) As decisions and their proofs can be 

arbitrarily complex impossibility results native to mathematical proofs become applicable to 

explanations. For example, explanations may be too long to be surveyed [80, 81] 

(Unserveyability), Unverifiable [71] or too complex to be understood [82] making the explanation 

incomprehensible to the user. Any AI, including black box neural networks can in principle be 

converted to a large decision tree of nothing but “if” statements, but it will only make it human-

readable not human-understandable.  

 

It is generally accepted that in order to understand certain information a person has to have a 

particular level of cognitive ability. This is the reason students are required to take standardized 

exams such as SAT, ACT, GRE, MCAT or LCAT, etc. and score at a particular percentile in order 

to be admitted to their desired program of study at a selective university. Other, but similar tests 

are given to those wishing to join the military or government service. All such exams indirectly 

measure person’s IQ (Intelligence Quotient) [83, 84] but vary significantly in how closely they 

correlate with standard IQ test scores (g-factor loading). The more demanding the program of 

study (even at the same university), the higher cognitive ability is expected from students. For 

example, average quantitative GRE score of students targeting mathematical sciences is 163, while 

average quantitative score for students interested in studying history is 1483. The trend may be 

reversed for verbal scores.  

 

People often find themselves in situations where they have to explain concepts across a significant 

communication range [85] for example to children or to people with mental challenges. The only 

available option in such cases is to provide a greatly oversimplified version of the explanation or 

a completely irrelevant but simple explanation (a lie). In fact the situation is so common we even 

have a toolbox of common “explanations” for particular situations. For example, if a five-year old 

asks: “Where do babies come from?” They are likely to hear something like “A seed from the 
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daddy and an egg from the mommy join together in the mom's tummy”4, instead of a talk about 

DNA, fertilization and womb. A younger child may learn that the “stork brings them” or “they 

come from a baby store”. Alternatively, an overly technical answer could be provided to confuse 

the child into thinking they got an answer, but with zero chance of them understanding such 

overcomplicated response. Overall, usefulness of an explanation is relative to the person who is 

trying to comprehend it. The same explanation may be comprehended by one person, and 

completely misunderstood by another.  

 

There is a similar and perhaps larger intelligence gap between superintelligence and adult humans, 

making the communication range unsurmountable. It is likely easier for a scientist to explain 

quantum physics to a mentally challenged deaf and mute four-year-old raised by wolves then for 

superintelligence to explain some of its decisions to the smartest human. We are simply not smart 

enough to understand certain concepts. Yampolskiy proposed [82] a complexity measure which is 

based on the minimum intelligence necessary to understand or develop a particular algorithm, and 

while it takes less intelligence to just understand rather than create both requirements could be well 

above IQ of the smartest human. In fact it could be very hard to explain advanced concepts to even 

slightly less intelligent agents.  

 

We can predict a certain complexity barrier to human understanding for any concept for which 

relative IQ of above 250 would be necessary, as no person has ever tested so high. In practice the 

barrier may be much lower, as average IQ is just 100 and additional complication from limited 

memory and limited attention spans can place even relative easy concepts outside of human grasp. 

To paraphrase Wittgenstein: if superintelligence explained itself we would not understand it. 

 

Given that research on deception by AI is well established [86] it would not be difficult for 

advanced AIs to provide highly believable lies to their human users. In fact such explanations can 

be designed to take advantage of AI’s knowledge of the human behavior [87, 88] and mental model 

[89, 90], and manipulate users beyond just convincing them that explanation is legitimate [91]. AI 

would be able to target explanations to the mental capacity of particular people, perhaps taking 

advantage of their inherent limitations. It would be a significant safety issue, and it is surprising to 

see some proposals for using human users as targets of competing (adversarial) explanations from 

AIs [92].  

 

Incomprehensibility results are well-known for different members of Chomsky hierarchy [93] with 

finite state automation unable to recognize context-free languages, pushdown automata unable to 

recognize context-sensitive languages and linear-bounded non-deterministic Turing machines 

unable to recognize recursively enumerable languages. Simpler machines can’t recognize 

languages which more complex machines can recognize.  

 

While people are frequently equated with unrestricted Turing machines via Church-Turing thesis 

[94], Blum et al. formalize human computation, in practice, as a much more restricted class [95]. 

However, Turing machines are not an upper limit on what is theoretically computable as described 

by different hypercomputation models [96]. Even if our advanced AIs (superintelligence), fail to 

achieve true hypercomputation capacity, for all practical purposes and compared to the human 
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computational capabilities they would be outside of what human-equivalent agents can 

recognize/comprehend.  

 

Superintelligence would be a different type of computation, far superior to humans in practice. It 

is obviously not the case that superintelligent machines would actually have infinite memories or 

speeds but they would appear to act as they do to unaugmented humans. For example a machine 

capable of remembering one trillion items vs seven, in short-term memory of people, would appear 

to have infinite capacity to memorize. In algorithmic complexity theory some algorithms become 

the most efficient for a particular problem type on inputs so large as to be unusable in practice, but 

such inputs are nonetheless finite [97]. So, just like a finite state automata can’t recognize 

recursively enumerable languages, so will people fail in practice to comprehend some explanations 

produced by superintelligent systems, they are simply not in the same class of automata, even if 

theoretically, given infinite time, they are. 

 

Additionally, decisions made by AI could be mapped onto the space of mathematical conjectures 

about the natural numbers. An explanation for why a particular mathematical conjecture is true or 

false would be equivalent to a proof (for that conjecture). However, due to Gödel's First 

Incompleteness Theorem we know that some true conjectures are unprovable. As we have mapped 

decision on conjectures and explanations on proofs, that means that some decision made by AI are 

fundamentally unexplainable/incomprehensible. Explanations as proofs would be subject to all the 

other limitations known about proofs, including Unserveyability, Unverifiability and 

Undefinability [98, 99]. Finally, it is important to note that we are not saying that such 

decision/conjecture reduction would preserve semantics of the subject, just that it is a useful tool 

for showing impossibility of explainability/comprehensibility in some cases. 
 

5. Conclusions 
The issues described in this paper can be seen as a communication problem between AI encoding 

and sending information (sender) and person receiving and decoding information (receiver). 

Efficient encoding and decoding of complex symbolic information is difficult enough, as described 

by Shannon’s Information Theory [100], but with Explainability and Comprehensibility of AI we 

also have to worry about complexity of semantic communication [101]. Explainability and 

Comprehensibility are another conjugate pair [71, 102] in the domain of AI safety. The more 

accurate is the explanation the less comprehensible it is, and vice versa, the more comprehensible 

the explanation the less accurate it is. A non-trivial explanation can’t be both accurate and 

understandable, but it can be inaccurate and comprehensible. There is a huge difference between 

understanding something and almost understanding it. Incomprehensibility is a general result 

applicable to many domains including science, social interactions, etc. depending on a mental 

capacity of a participating person(s).  

 

Human being are finite in our abilities. For example our short term memory is about 7 units on 

average. In contrast, an AI can remember billions of items and their capacity to do so grows 

exponentially, while never infinite in a true mathematical sense, machine capabilities can be 

considered such in comparison to ours. This is true for memory, compute speed and 

communication abilities. Hence the famous: Finitum Non Capax Infiniti (The finite cannot contain 

the infinite) is highly applicable to understand the incomprehensibility of the god-like [103] 

superintelligent AIs.  



 

Shown impossibility results present a number of problems for AI Safety. Evaluation and 

debugging of intelligent systems becomes much harder if their decisions are 

unexplainable/incomprehensible. In particular, in case of AI failures [104] accurate explanations 

are necessary to understand the problem and reduce likelihood of future accidents. If all we have 

is a “black box” it is impossible to understand causes of failure and improve system safety. 

Additionally, if we grow accustomed to accepting AI’s answers without an explanation, essentially 

treating it as an Oracle system, we would not be able to tell if it begins providing wrong or 

manipulative answers.  
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