4 research outputs found

    Cones and foci for protocol verification revisited

    Get PDF
    We define a cones and foci proof method, which rephrases the question whether two system specifications are branching bisimilar in terms of proof obligations on relations between data objects. Compared to the original cones and foci method from Groote and Springintveld cite{GroSpr01}, our method is more generally applicable, and does not require a preprocessing step to eliminate au au-loops. We prove soundness of our approach and give an application

    Will Informatics be able to Justify the Construction of Large Computer Based Systems? Part II. Trusted compiler implementation

    Get PDF
    The present and the previous article on Realistic Correct Systems Implementation together address correct construction and functioning of large computer based systems. In view of so many annoying and dangerous system misbehaviors we want to ask: Can informaticians righteously be accounted for incorrectness of ystems, will they be able to justify systems to work correctly as intended? We understand the word justification in this sense, i.e. for the design of computer based systems, the formulation of mathematical models of information flows, and the construction of controlling software to be such that the expected system effects, the absence of internal failures, and the robustness towards misuses and malicious external attacks are foreseeable as logical consequences of the models. Since more than 40 years, theoretical informatics, software engineering and compiler construction have made important contributions to correct specification and also to correct high-level implementation of compilers. But the third step, translation — bootstrapping — of high level compiler programs into host machine code by existing host ompilers, is as important. So far there are no realistic recipes to close this gap, although it is known for many years that trust in executable code can dangerously be compromised by Trojan Horses in compiler executables, even if they pass strongest tests. Our article will show how to close this low level gap. We demonstrate the method of rigorous syntactic a-posteriori code inspection, which has been developed by the research group Verifix funded by the Deutsche Forschungsgemeinschaft (DFG).Багато років теоретична інформатика вчастині розробки програмного забезпечення і побудови компіляторів займалась проблемами правильності специфікацій і високорівневих реалізацій компіляторів. У другій частині статті розглядається проблема коректного і безпечного перекладу (bootstrapping) програм з мови високого рівня в коди машини. Показано, як вирішуються проблеми коректності програм на мовах низького рівня. Продемонстрований метод строго синтаксичного апостеріор ного аналізу, котрий був розроблений дослідною групою Verifix в університеті м. Киля (ФРН).Много лет теоретическая информатика в части разработки программного обеспечения и построения компиляторов занималась проблемами правильности спецификаций и высокоуровневых реализаций компиляторов. Во второй части статьи рассматривается проблема корректного и безопасного перевода (bootstrapping) программ с языка высокого уровня в коды машины. Показано, как решаются проблемы корректности программ на языках низкого уровня. Продемонстрирован метод строго синтаксического апостериорного анализа, который был разработан исследовательской группой Verifix в университете г. Киля (ФРГ)

    A provably correct embedded verifier for the certification of safety critical software

    No full text
    VFRAME is one of ANSALDO`s software driven vital architectures for safety critical products. This paper describes a project whose results is the development of an `embedded verifier`, i.e. a system integrated within VFRAME and able to certify the correctness of one of VFRAME components, a compiler. The embedded verifier satisfies two precise requirements. First, the compiler must be certified in a fully automatic and efficient way. Second, the embedded verifier must be itself certified, in a way which can be easily understood and validated by end user

    A Provably Correct Embedded Verifier for the Certification of Safety Critical Software

    No full text
    VFRAME is one of ANSALDO`s software driven vital architectures for safety critical products. This paper describes a project whose results is the development of an `embedded verifier`, i.e. a system integrated within VFRAME and able to certify the correctness of one of VFRAME components, a compiler. The embedded verifier satisfies two precise requirements. First, the compiler must be certified in a fully automatic and efficient way. Second, the embedded verifier must be itself certified, in a way which can be easily understood and validated by end user
    corecore