643 research outputs found

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Evaluator services for optimised service placement in distributed heterogeneous cloud infrastructures

    Get PDF
    Optimal placement of demanding real-time interactive applications in a distributed heterogeneous cloud very quickly results in a complex tradeoff between the application constraints and resource capabilities. This requires very detailed information of the various requirements and capabilities of the applications and available resources. In this paper, we present a mathematical model for the service optimization problem and study the concept of evaluator services as a flexible and efficient solution for this complex problem. An evaluator service is a service probe that is deployed in particular runtime environments to assess the feasibility and cost-effectiveness of deploying a specific application in such environment. We discuss how this concept can be incorporated in a general framework such as the FUSION architecture and discuss the key benefits and tradeoffs for doing evaluator-based optimal service placement in widely distributed heterogeneous cloud environments

    Intent-based zero-touch service chaining layer for software-defined edge cloud networks

    Get PDF
    Edge Computing, along with Software Defined Networking and Network Function Virtualization, are causing network infrastructures to become as distributed clouds extended to the edge with services provided as dynamically established sequences of virtualized functions (i.e., dynamic service chains) thereby elastically addressing different processing requirements of application data flows. However, service operators and application developers are not inclined to deal with descriptive configuration directives to establish and operate services, especially in case of service chains. Intent-based Networking is emerging as a novel approach that simplifies network management and automates the implementation of network operations required by applications. This paper presents an intent-based zero-touch service chaining layer that provides the programmable provision of service chain paths in edge cloud networks. In addition to the dynamic and elastic deployment of data delivery services, the intent-based layer offers an automated adaptation of the service chains paths according to the application's goals expressed in the intent to recover from sudden congestion events in the SDN network. Experiments have been carried out in an emulated network environment to show the feasibility of the approach and to evaluate the performance of the intent layer in terms of network resource usage and adaptation overhead

    QoS-aware service continuity in the virtualized edge

    Get PDF
    5G systems are envisioned to support numerous delay-sensitive applications such as the tactile Internet, mobile gaming, and augmented reality. Such applications impose new demands on service providers in terms of the quality of service (QoS) provided to the end-users. Achieving these demands in mobile 5G-enabled networks represent a technical and administrative challenge. One of the solutions proposed is to provide cloud computing capabilities at the edge of the network. In such vision, services are cloudified and encapsulated within the virtual machines or containers placed in cloud hosts at the network access layer. To enable ultrashort processing times and immediate service response, fast instantiation, and migration of service instances between edge nodes are mandatory to cope with the consequences of user’s mobility. This paper surveys the techniques proposed for service migration at the edge of the network. We focus on QoS-aware service instantiation and migration approaches, comparing the mechanisms followed and emphasizing their advantages and disadvantages. Then, we highlight the open research challenges still left unhandled.publishe
    • …
    corecore