1,157 research outputs found

    Assentication: User Deauthentication and Lunchtime Attack Mitigation with Seated Posture Biometric

    Full text link
    Biometric techniques are often used as an extra security factor in authenticating human users. Numerous biometrics have been proposed and evaluated, each with its own set of benefits and pitfalls. Static biometrics (such as fingerprints) are geared for discrete operation, to identify users, which typically involves some user burden. Meanwhile, behavioral biometrics (such as keystroke dynamics) are well suited for continuous, and sometimes more unobtrusive, operation. One important application domain for biometrics is deauthentication, a means of quickly detecting absence of a previously authenticated user and immediately terminating that user's active secure sessions. Deauthentication is crucial for mitigating so called Lunchtime Attacks, whereby an insider adversary takes over (before any inactivity timeout kicks in) authenticated state of a careless user who walks away from her computer. Motivated primarily by the need for an unobtrusive and continuous biometric to support effective deauthentication, we introduce PoPa, a new hybrid biometric based on a human user's seated posture pattern. PoPa captures a unique combination of physiological and behavioral traits. We describe a low cost fully functioning prototype that involves an office chair instrumented with 16 tiny pressure sensors. We also explore (via user experiments) how PoPa can be used in a typical workplace to provide continuous authentication (and deauthentication) of users. We experimentally assess viability of PoPa in terms of uniqueness by collecting and evaluating posture patterns of a cohort of users. Results show that PoPa exhibits very low false positive, and even lower false negative, rates. In particular, users can be identified with, on average, 91.0% accuracy. Finally, we compare pros and cons of PoPa with those of several prominent biometric based deauthentication techniques

    Advanced user authentification for mobile devices

    Get PDF
    Access to the full-text thesis is no longer available at the author's request, due to 3rd party copyright restrictions. Access removed on 28.11.2016 by CS (TIS).Metadata merged with duplicate record ( http://hdl.handle.net/10026.1/1101 - now deleted) on 20.12.2016 by CS (TIS).Recent years have witnessed widespread adoption of mobile devices. Whereas initial popularity was driven by voice telephony services, capabilities are now broadening to allow an increasing range of data orientated services. Such services serve to extend the range of sensitive data accessible through such devices and will in turn increase the requirement for reliable authentication of users. This thesis considers the authentication requirements of mobile devices and proposes novel mechanisms to improve upon the current state of the art. The investigation begins with an examination of existing authentication techniques, and illustrates a wide range of drawbacks. A survey of end-users reveals that current methods are frequently misused and considered inconvenient, and that enhanced methods of security are consequently required. To this end, biometric approaches are identified as a potential means of overcoming the perceived constraints, offering an opportunity for security to be maintained beyond pointof- entry, in a continuous and transparent fashion. The research considers the applicability of different biometric approaches for mobile device implementation, and identifies keystroke analysis as a technique that can offer significant potential within mobile telephony. Experimental evaluations reveal the potential of the technique when applied to a Personal Identification Number (PIN), telephone number and text message, with best case equal error rates (EER) of 9%, 8% and 18% respectively. In spite of the success of keystroke analysis for many users, the results demonstrate the technique is not uniformly successful across the whole of a given population. Further investigation suggests that the same will be true for other biometrics, and therefore that no single authentication technique could be relied upon to account for all the users in all interaction scenarios. As such, a novel authentication architecture is specified, which is capable of utilising the particular hardware configurations and computational capabilities of devices to provide a robust, modular and composite authentication mechanism. The approach, known as IAMS (Intelligent Authentication Management System), is capable of utilising a broad range of biometric and secret knowledge based approaches to provide a continuous confidence measure in the identity of the user. With a high confidence, users are given immediate access to sensitive services and information, whereas with lower levels of confidence, restrictions can be placed upon access to sensitive services, until subsequent reassurance of a user's identity. The novel architecture is validated through a proof-of-concept prototype. A series of test scenarios are used to illustrate how IAMS would behave, given authorised and impostor authentication attempts. The results support the use of a composite authentication approach to enable the non-intrusive authentication of users on mobile devices.Orange Personal Communication Services Ltd

    Continuous and transparent multimodal authentication: reviewing the state of the art

    Get PDF
    Individuals, businesses and governments undertake an ever-growing range of activities online and via various Internet-enabled digital devices. Unfortunately, these activities, services, information and devices are the targets of cybercrimes. Verifying the user legitimacy to use/access a digital device or service has become of the utmost importance. Authentication is the frontline countermeasure of ensuring only the authorized user is granted access; however, it has historically suffered from a range of issues related to the security and usability of the approaches. They are also still mostly functioning at the point of entry and those performing sort of re-authentication executing it in an intrusive manner. Thus, it is apparent that a more innovative, convenient and secure user authentication solution is vital. This paper reviews the authentication methods along with the current use of authentication technologies, aiming at developing a current state-of-the-art and identifying the open problems to be tackled and available solutions to be adopted. It also investigates whether these authentication technologies have the capability to fill the gap between high security and user satisfaction. This is followed by a literature review of the existing research on continuous and transparent multimodal authentication. It concludes that providing users with adequate protection and convenience requires innovative robust authentication mechanisms to be utilized in a universal level. Ultimately, a potential federated biometric authentication solution is presented; however it needs to be developed and extensively evaluated, thus operating in a transparent, continuous and user-friendly manner

    A Prototype Model of an IoT-based Door System using Double-access Fingerprint Technique

    Get PDF
    Security of lives and properties remains a trending issue of optimal concern in the recent times. It is one of the major issues posing challenges to governments, establishments and individuals. Common security techniques such as the use of keys, passwords and cards are used in home environments and hotels for traditional authentication. Others include lock codes, mechanical doors or electronics RFID Card Door. However, compromise of these security techniques such as property theft and unauthorized entry by visitors and hotel staff is due to a single authenticated access method which is not trustworthy and reliable. This calls for an improved technique. An IoT-based Smart Door System Model that provide double access authentication through fingerprint modules is presented for hotel and guest houses in this paper. The proposed system architecture design specifies all the modules involved and the circuit diagram designed specifies various modules inter connectivity. The prototype implementation software developed in C programming language was tested with several series of captured templates. The prototype test conducted showed that the Smart door system developed responded only to fingerprint signature and unlocks the door when it matches with signatures captured during booking. Keywords: Arduino, biometry, fingerprint, sensor, smart door, Io

    Biometric E-Commerce: Security in B2C (Business-to-Consumer)

    Get PDF
    Every e-commerce transaction done online seemed to be a secure transaction. However, many users do not realize the fraud that happens while doing transactions. Of course, there are ways to curd this rising problem. The objective of this project is to study the feasibility and the security of e-commerce by implementing fingerprint biometric during transaction. The key point is to create a safe and secure environment for users to do transactions on the Internet without the need to worry about fraud. The methodology used will be Retotype, a combination of research and prototype. A Retotype will be modeled to capture the most efficient and secure e-commerce transaction method. The final product would be a prototype of an e-commerce website incorporated with fingerprint biometric as an authentication method. An implementation strategy would be analyzed to weigh how practical can this system work in the real world. I

    Non-Intrusive Continuous User Authentication for Mobile Devices

    Get PDF
    The modern mobile device has become an everyday tool for users and business. Technological advancements in the device itself and the networks that connect them have enabled a range of services and data access which have introduced a subsequent increased security risk. Given the latter, the security requirements need to be re-evaluated and authentication is a key countermeasure in this regard. However, it has traditionally been poorly served and would benefit from research to better understand how authentication can be provided to establish sufficient trust. This thesis investigates the security requirements of mobile devices through literature as well as acquiring the user’s perspectives. Given the findings it proposes biometric authentication as a means to establish a more trustworthy approach to user authentication and considers the applicability and topology considerations. Given the different risk and requirements, an authentication framework that offers transparent and continuous is developed. A thorough end-user evaluation of the model demonstrates many positive aspects of transparent authentication. The technical evaluation however, does raise a number of operational challenges that are difficult to achieve in a practical deployment. The research continues to model and simulate the operation of the framework in an controlled environment seeking to identify and correlate the key attributes of the system. Based upon these results and a number of novel adaptations are proposed to overcome the operational challenges and improve upon the impostor detection rate. The new approach to the framework simplifies the approach significantly and improves upon the security of the system, whilst maintaining an acceptable level of usability

    Security Features in Fingerprint Biometric System

    Get PDF
    Nowadays, embedded systems run in every setting all around the globe. Recent advances in technology have created many sophisticated applications rich with functionality we have never seen. Nonetheless, security and privacy were a common issue for these systems, whether or not sensitive data can be protected from malicious attacks. These concerns are justified on the grounds that the past of security breaches and the resulting consequences narrate horrific stories concerning embedded systems. The attacks are now evolving, becoming more complex with technological advancements. Therefore, a new way of implementing security in embedded systems must be pursued. This paper attempts to demonstrate the incorporation of security features in fingerprint biometric system in the requirements analysis phase, ensuring the same throughout the system life cycle of embedded systems based on case study. The comparison of various biometric technologies such as face, fingerprint, iris, palm print, hand geometry gait, signature, and keystroke is presented. The aim of this paper includes analyzing, decomposing and transforming the threats and counter-measures identified during the requirements analysis using the abuse case into more specific safety requirements or functions. Furthermore, we have shown that the incorporation of security features into the biometric fingerprint system by analyzing the requirements of the system and providing the main steps for the protection of the biometric system in this paper

    E-Invigilator: A biometric-based supervision system for e-Assessments

    Get PDF
    The creation of Virtual Learning Environments (VLEs) have revolutionized the online delivery of learning materials, from traditional lectures slides through to podcasts, blogs and wikis. However, such advances in how we assess such learning have not evolved - with physical attendance at proctored exams still a necessity for formal assessments. This paper presents a novel model to enable remote and electronic invigilation of students during formal assessment. The approach utilizes transparent authentication to provide for a non-intrusive and continuous verification of the candidates identity throughout the examination timeframe. A prototype is developed and a technology evaluation of the platform demonstrates the feasibility of the approach
    • …
    corecore