14 research outputs found

    An Intersection Management Protocol for Mixed Autonomous and Legacy Vehicles

    Get PDF
    3rd Doctoral Congress in Engineering will be held at FEUP on the 27th to 28th of June, 2019An important element in urban traffic management is the Intersection Management (IM) that deals with traffic lights signaling (either real or virtual). Intersections are vulnerable to traffic congestion and accidents. Therefore, this paper investigates a synchronous intersection management protocol for mixed autonomous and humandriven vehicles in the context of decentralized traffic management.info:eu-repo/semantics/publishedVersio

    HARL: A Novel Hierachical Adversary Reinforcement Learning for Automoumous Intersection Management

    Full text link
    As an emerging technology, Connected Autonomous Vehicles (CAVs) are believed to have the ability to move through intersections in a faster and safer manner, through effective Vehicle-to-Everything (V2X) communication and global observation. Autonomous intersection management is a key path to efficient crossing at intersections, which reduces unnecessary slowdowns and stops through adaptive decision process of each CAV, enabling fuller utilization of the intersection space. Distributed reinforcement learning (DRL) offers a flexible, end-to-end model for AIM, adapting for many intersection scenarios. While DRL is prone to collisions as the actions of multiple sides in the complicated interactions are sampled from a generic policy, restricting the application of DRL in realistic scenario. To address this, we propose a hierarchical RL framework where models at different levels vary in receptive scope, action step length, and feedback period of reward. The upper layer model accelerate CAVs to prevent them from being clashed, while the lower layer model adjust the trends from upper layer model to avoid the change of mobile state causing new conflicts. And the real action of CAV at each step is co-determined by the trends from both levels, forming a real-time balance in the adversarial process. The proposed model is proven effective in the experiment undertaken in a complicated intersection with 4 branches and 4 lanes each branch, and show better performance compared with baselines

    An analysis of vehicle-to-infrastructure communications for non-signalised intersection control under mixed driving behaviour

    Get PDF
    Intersection control has an important role in the management of urban traffic to ensure safety, high traffic flow and to prevent congestion. Recently, a growing body of literature has been reported on the theme of non-signalised intersection control in which traffic lights are replaced with intelligent road side units. Data from several studies suggest that non-signalised control could reduce vehicle delays and fuel consumption significantly whilst ensuring safety. However, there is little published data on the impact of the mixed driving behaviour with human-driven vehicles and autonomous vehicles. This paper investigates the emerging role of connectivity and vehicle autonomy in the context of traffic control under the mixed driving behaviour scenario. The concepts of vehicle-to-infrastructure (V2I) communications and multi-agent systems are central to achieving a robust and reliable traffic-light-free intersection control. Comprehensive computer simulation results on a four-way intersection indicate over 96% reduced average vehicle delay and 37% less fuel consumption with the non-signalised control solution compared to the traffic light control. The outcome of this study offers some important insights into enabling cooperation between vehicles and traffic infrastructure via V2I communications, in order to make more efficient real-time decisions about traffic conditions, whilst ensuring a higher degree of safety

    Mixed-Traffic Intersection Management Utilizing Connected and Autonomous Vehicles as Traffic Regulators

    Get PDF
    Connected and autonomous vehicles (CAVs) can realize many revolutionary applications, but it is expected to have mixed-traffic including CAVs and human-driving vehicles (HVs) together for decades. In this paper, we target the problem of mixed-traffic intersection management and schedule CAVs to control the subsequent HVs. We develop a dynamic programming approach and a mixed integer linear programming (MILP) formulation to optimally solve the problems with the corresponding intersection models. We then propose an MILP-based approach which is more efficient and real-time-applicable than solving the optimal MILP formulation, while keeping good solution quality as well as outperforming the first-come-first-served (FCFS) approach. Experimental results and SUMO simulation indicate that controlling CAVs by our approaches is effective to regulate mixed-traffic even if the CAV penetration rate is low, which brings incentive to early adoption of CAVs

    Efficient management of road intersections for automated vehicles – The FRFP system applied to the various types of intersections and roundabouts.

    Get PDF
    In the last decade, automatic driving systems for vehicles circulating on public roads have become increasingly closer to reality. There is always a strong interest in this topic among research centers and car manufacturers. One of the most critical aspects is the management of intersections, i.e., who will have to go first and in what ways? This is the question we want to answer through this research. Clearly, the goal is to manage the intersection safely, making it possible to reduce road congestion, travel time, emissions, and fuel consumption as much as possible. The research is conducted by comparing a new management system with the systems already known in the state of the art for different types of intersections. The new system proposed by us is called FRFP (first to reach the end of the intersection first to pass). In particular, vehicles will increase or decrease their speed in collaboration with each other by making the right decision. The vehicle that can potentially reach the intersection exit first

    Mitigating the Effects of Cyber Attacks and Human Control in an Autonomous Intersection

    Get PDF
    Widespread use of fully autonomous vehicles is near. However, the desire for a human to maintain control, even if limited, of a vehicle will likely never fully subside. Protocols to safely and efficiently manage reservation-based intersections with a mixture of fully autonomous, semi-autonomous, and non-autonomous vehicles exist such as AIM, SemiAIM, and H-AIM. Missing from these protocols is persistent human control of semi-autonomous vehicles in approaching and navigating autonomous intersections without the use of traditional signals. This thesis offers a proof-of-concept of a reservation-based protocol with necessary extensions required for human control in semi-autonomous vehicles. Desired is a protocol that maintains the benefits in efficiency of a fully autonomous environment, such as AIM, while allowing persistent human control of a vehicle. Proposed are possible feedback mechanisms for human response such as displays detailing intersection arrival time, goal velocity, lane keeping assistance, and other warnings. Also developed is a synthetic environment able to demonstrate cyber attacks, their mitigations, and aid in designing a protocol introducing persistent human control. The AFTR Burner three-dimensional virtual world offers the ability to model this physics based environment in a highly predictable and realistic manner. The reservation-based protocol used in the synthetic environment is first verified and validated against both an established reservation-based protocol, such as AIM, and also use case scenarios to determine if the expected behavior is exhibited. Preliminary observations suggest that persistent human control is a possibility among reservation-based autonomous intersections, but further research must be done to determine its viability

    Development and evaluation of cooperative intersection management algorithm under connected vehicles environment

    Get PDF
    Recent technological advancements in the automotive and transportation industry established a firm foundation for development and implementation of various automated and connected vehicle (C/AV) solutions around the globe. Wireless communication technologies such as the dedicated short-range communication (DSRC) protocol are enabling instantaneous information exchange between vehicles and infrastructure. Such information exchange produces tremendous benefits with the possibility to automate conventional traffic streams and enhance existing signal control strategies. While many promising studies in the area of signal control under connected vehicle (CV) environment have been introduced, they mainly offer solutions designed to operate a single isolated intersection or they require high technology penetration rates to operate in a safe and efficient manner. Applications designed to operate on a signalized corridor with imperfect market penetration rates of connected vehicle technology represent a bridge between conventional traffic control paradigm and fully automated corridors of the future. Assuming utilization of the connected vehicle environment and vehicle to infrastructure (V2I) technology, all vehicular and signal-related parameters are known and can be shared with the control agent to control automated vehicles while improving the mobility of the signalized corridor. This dissertation research introduces an intersection management strategy for a corridor with automated vehicles utilizing vehicular trajectory-driven optimization method. The Trajectory-driven Optimization for Automated Driving (TOAD) provides an optimal trajectory for automated vehicles while maintaining safe and uninterrupted movement of general traffic, consisting of regular unequipped vehicles. Signal status parameters such as cycle length and splits are continuously captured. At the same time, vehicles share their position information with the control agent. Both inputs are then used by the control algorithm to provide optimal trajectories for automated vehicles, resulting in the reduction of vehicle delay along the signalized corridor with fixed-time signal control. To determine the most efficient trajectory for automated vehicles, an evolutionary-based optimization is utilized. Influence of the prevailing traffic conditions is incorporated into a control algorithm using conventional data collection methods such as loop detectors, Bluetooth or Wi-Fi sensors to collect vehicle counts, travel time on corridor segments, and spot speed. Moreover, a short-term, artificial intelligence prediction model is developed to achieve reasonable deployment of data collection devices and provide accurate vehicle delay predictions producing realistic and highly-efficient longitudinal vehicle trajectories. The concept evaluation through microsimulation reveals significant mobility improvements compared to contemporary corridor management approach. The results for selected test-bed locations on signalized arterials in New Jersey reveals up to 19.5 % reduction in overall corridor travel time depending on different market penetration and lane configuration scenario. It is also discovered that operational scenarios with a possibility of utilizing reserved lanes for movement of automated vehicles further increases the effectiveness of the proposed algorithm. In addition, the proposed control algorithm is feasible under imperfect C/AV market penetrations showing mobility improvements even with low market penetration rates
    corecore