69 research outputs found

    Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic

    Get PDF
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Goedel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Goedel logics by Avron. It is shown that the system is sound and complete, and allows cut-elimination. A question by Takano regarding the eliminability of the Takeuti-Titani density rule is answered affirmatively.Comment: v.2: 15 pages. Final version. (v.1: 15 pages. To appear in Computer Science Logic 2000 Proceedings.

    Incompleteness of a first-order Gödel logic and some temporal logics of programs

    Get PDF
    It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) and of the authors' temporal logic of linear discrete time with gaps follows

    Quantified Propositional Gödel Logics

    Get PDF
    It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics

    Compactness of first-order fuzzy logics

    Full text link
    One of the nice properties of the first-order logic is the compactness of satisfiability. It state that a finitely satisfiable theory is satisfiable. However, different degrees of satisfiability in many-valued logics, poses various kind of the compactness in these logics. One of this issues is the compactness of KK-satisfiability. Here, after an overview on the results around the compactness of satisfiability and compactness of KK-satisfiability in many-valued logic based on continuous t-norms (basic logic), we extend the results around this topic. To this end, we consider a reverse semantical meaning for basic logic. Then we introduce a topology on [0,1][0,1] and [0,1]2[0,1]^2 that the interpretation of all logical connectives are continuous with respect to these topologies. Finally using this fact we extend the results around the compactness of satisfiability in basic ogic
    • …
    corecore