4,071 research outputs found

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP

    A logic programming framework for modeling temporal objects

    Get PDF
    Published versio

    The CIFF Proof Procedure for Abductive Logic Programming with Constraints: Theory, Implementation and Experiments

    Get PDF
    We present the CIFF proof procedure for abductive logic programming with constraints, and we prove its correctness. CIFF is an extension of the IFF proof procedure for abductive logic programming, relaxing the original restrictions over variable quantification (allowedness conditions) and incorporating a constraint solver to deal with numerical constraints as in constraint logic programming. Finally, we describe the CIFF system, comparing it with state of the art abductive systems and answer set solvers and showing how to use it to program some applications. (To appear in Theory and Practice of Logic Programming - TPLP)

    Tools for producing formal specifications : a view of current architectures and future directions

    Get PDF
    During the last decade, one important contribution towards requirements engineering has been the advent of formal specification languages. They offer a well-defined notation that can improve consistency and avoid ambiguity in specifications. However, the process of obtaining formal specifications that are consistent with the requirements is itself a difficult activity. Hence various researchers are developing systems that aid the transition from informal to formal specifications. The kind of problems tackled and the contributions made by these proposed systems are very diverse. This paper brings these studies together to provide a vision for future architectures that aim to aid the transition from informal to formal specifications. The new architecture, which is based on the strengths of existing studies, tackles a number of key issues in requirements engineering such as identifying ambiguities, incompleteness, and reusability. The paper concludes with a discussion of the research problems that need to be addressed in order to realise the proposed architecture

    Teaching programming at a distance: the Internet software visualization laboratory

    Get PDF
    This paper describes recent developments in our approach to teaching computer programming in the context of a part-time Masters course taught at a distance. Within our course, students are sent a pack which contains integrated text, software and video course material, using a uniform graphical representation to tell a consistent story of how the programming language works. The students communicate with their tutors over the phone and through surface mail. Through our empirical studies and experience teaching the course we have identified four current problems: (i) students' difficulty mapping between the graphical representations used in the course and the programs to which they relate, (ii) the lack of a conversational context for tutor help provided over the telephone, (iii) helping students who due to their other commitments tend to study at 'unsociable' hours, and (iv) providing software for the constantly changing and expanding range of platforms and operating systems used by students. We hope to alleviate these problems through our Internet Software Visualization Laboratory (ISVL), which supports individual exploration, and both synchronous and asynchronous communication. As a single user, students are aided by the extra mappings provided between the graphical representations used in the course and their computer programs, overcoming the problems of the original notation. ISVL can also be used as a synchronous communication medium whereby one of the users (generally the tutor) can provide an annotated demonstration of a program and its execution, a far richer alternative to technical discussions over the telephone. Finally, ISVL can be used to support asynchronous communication, helping students who work at unsociable hours by allowing the tutor to prepare short educational movies for them to view when convenient. The ISVL environment runs on a conventional web browser and is therefore platform independent, has modest hardware and bandwidth requirements, and is easy to distribute and maintain. Our planned experiments with ISVL will allow us to investigate ways in which new technology can be most appropriately applied in the service of distance education

    Exploiting Term Hiding to Reduce Run-time Checking Overhead

    Full text link
    One of the most attractive features of untyped languages is the flexibility in term creation and manipulation. However, with such power comes the responsibility of ensuring the correctness of these operations. A solution is adding run-time checks to the program via assertions, but this can introduce overheads that are in many cases impractical. While static analysis can greatly reduce such overheads, the gains depend strongly on the quality of the information inferred. Reusable libraries, i.e., library modules that are pre-compiled independently of the client, pose special challenges in this context. We propose a technique which takes advantage of module systems which can hide a selected set of functor symbols to significantly enrich the shape information that can be inferred for reusable libraries, as well as an improved run-time checking approach that leverages the proposed mechanisms to achieve large reductions in overhead, closer to those of static languages, even in the reusable-library context. While the approach is general and system-independent, we present it for concreteness in the context of the Ciao assertion language and combined static/dynamic checking framework. Our method maintains the full expressiveness of the assertion language in this context. In contrast to other approaches it does not introduce the need to switch the language to a (static) type system, which is known to change the semantics in languages like Prolog. We also study the approach experimentally and evaluate the overhead reduction achieved in the run-time checks.Comment: 26 pages, 10 figures, 2 tables; an extension of the paper version accepted to PADL'18 (includes proofs, extra figures and examples omitted due to space reasons

    Inference of termination conditions for numerical loops in Prolog

    Full text link
    We present a new approach to termination analysis of numerical computations in logic programs. Traditional approaches fail to analyse them due to non well-foundedness of the integers. We present a technique that allows overcoming these difficulties. Our approach is based on transforming a program in a way that allows integrating and extending techniques originally developed for analysis of numerical computations in the framework of query-mapping pairs with the well-known framework of acceptability. Such an integration not only contributes to the understanding of termination behaviour of numerical computations, but also allows us to perform a correct analysis of such computations automatically, by extending previous work on a constraint-based approach to termination. Finally, we discuss possible extensions of the technique, including incorporating general term orderings.Comment: To appear in Theory and Practice of Logic Programming. To appear in Theory and Practice of Logic Programmin
    • …
    corecore